Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 171(7): 1573-1588.e28, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29224777

RESUMEN

There is considerable evidence that chromosome structure plays important roles in gene control, but we have limited understanding of the proteins that contribute to structural interactions between gene promoters and their enhancer elements. Large DNA loops that encompass genes and their regulatory elements depend on CTCF-CTCF interactions, but most enhancer-promoter interactions do not employ this structural protein. Here, we show that the ubiquitously expressed transcription factor Yin Yang 1 (YY1) contributes to enhancer-promoter structural interactions in a manner analogous to DNA interactions mediated by CTCF. YY1 binds to active enhancers and promoter-proximal elements and forms dimers that facilitate the interaction of these DNA elements. Deletion of YY1 binding sites or depletion of YY1 protein disrupts enhancer-promoter looping and gene expression. We propose that YY1-mediated enhancer-promoter interactions are a general feature of mammalian gene control.


Asunto(s)
Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Factor de Transcripción YY1/metabolismo , Animales , Factor de Unión a CCCTC/metabolismo , Células Madre Embrionarias/metabolismo , Humanos , Ratones
2.
Cell ; 167(5): 1188-1200, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863240

RESUMEN

Understanding how transcriptional enhancers control over 20,000 protein-coding genes to maintain cell-type-specific gene expression programs in all human cells is a fundamental challenge in regulatory biology. Recent studies suggest that gene regulatory elements and their target genes generally occur within insulated neighborhoods, which are chromosomal loop structures formed by the interaction of two DNA sites bound by the CTCF protein and occupied by the cohesin complex. Here, we review evidence that insulated neighborhoods provide for specific enhancer-gene interactions, are essential for both normal gene activation and repression, form a chromosome scaffold that is largely preserved throughout development, and are perturbed by genetic and epigenetic factors in disease. Insulated neighborhoods are a powerful paradigm for gene control that provides new insights into development and disease.


Asunto(s)
Cromosomas/metabolismo , Regulación de la Expresión Génica , Animales , Factor de Unión a CCCTC , Elementos de Facilitación Genéticos , Humanos , Elementos Aisladores , Mamíferos/metabolismo , Proteínas Represoras/metabolismo
3.
Mol Cell ; 78(3): 459-476.e13, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32240602

RESUMEN

The cyclin-dependent kinase 1 (Cdk1) drives cell division. To uncover additional functions of Cdk1, we generated knockin mice expressing an analog-sensitive version of Cdk1 in place of wild-type Cdk1. In our study, we focused on embryonic stem cells (ESCs), because this cell type displays particularly high Cdk1 activity. We found that in ESCs, a large fraction of Cdk1 substrates is localized on chromatin. Cdk1 phosphorylates many proteins involved in epigenetic regulation, including writers and erasers of all major histone marks. Consistent with these findings, inhibition of Cdk1 altered histone-modification status of ESCs. High levels of Cdk1 in ESCs phosphorylate and partially inactivate Dot1l, the H3K79 methyltransferase responsible for placing activating marks on gene bodies. Decrease of Cdk1 activity during ESC differentiation de-represses Dot1l, thereby allowing coordinated expression of differentiation genes. These analyses indicate that Cdk1 functions to maintain the epigenetic identity of ESCs.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Células Madre Embrionarias/fisiología , Epigénesis Genética , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Animales , Proteína Quinasa CDC2/genética , Diferenciación Celular , Células Cultivadas , Inmunoprecipitación de Cromatina/métodos , Femenino , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Células MCF-7 , Masculino , Ratones , Ratones Noqueados , Fosforilación , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Nature ; 572(7771): 676-680, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31391581

RESUMEN

The CCCTC-binding factor (CTCF), which anchors DNA loops that organize the genome into structural domains, has a central role in gene control by facilitating or constraining interactions between genes and their regulatory elements1,2. In cancer cells, the disruption of CTCF binding at specific loci by somatic mutation3,4 or DNA hypermethylation5 results in the loss of loop anchors and consequent activation of oncogenes. By contrast, the germ-cell-specific paralogue of CTCF, BORIS (brother of the regulator of imprinted sites, also known as CTCFL)6, is overexpressed in several cancers7-9, but its contributions to the malignant phenotype remain unclear. Here we show that aberrant upregulation of BORIS promotes chromatin interactions in ALK-mutated, MYCN-amplified neuroblastoma10 cells that develop resistance to ALK inhibition. These cells are reprogrammed to a distinct phenotypic state during the acquisition of resistance, a process defined by the initial loss of MYCN expression followed by subsequent overexpression of BORIS and a concomitant switch in cellular dependence from MYCN to BORIS. The resultant BORIS-regulated alterations in chromatin looping lead to the formation of super-enhancers that drive the ectopic expression of a subset of proneural transcription factors that ultimately define the resistance phenotype. These results identify a previously unrecognized role of BORIS-to promote regulatory chromatin interactions that support specific cancer phenotypes.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Quinasa de Linfoma Anaplásico/genética , Animales , Factor de Unión a CCCTC/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Células HEK293 , Humanos , Ratones , Terapia Molecular Dirigida , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/enzimología , Neuroblastoma/genética , Fenotipo , Unión Proteica
5.
Emerg Med J ; 41(11): 691-693, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39074965

RESUMEN

The use of dock leaves to ease the discomfort of nettle stings is a well-known folk remedy in the British Isles, yet has never been tested in a clinical trial. A group of Emergency Department doctors designed and conducted the Nettle-induced Urticaria Treatment Study (NUTS) as a research training and team-building exercise to address this gap in the Emergency Medicine evidence base.


Asunto(s)
Urticaria , Humanos , Urticaria/terapia , Urticaria/etiología , Urtica dioica , Servicio de Urgencia en Hospital/organización & administración
6.
Cell Mol Life Sci ; 79(6): 338, 2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35665862

RESUMEN

The bromodomain and extraterminal motif (BET) proteins are critical drug targets for diseases. The precise functions and relationship of BRD2 with other BET proteins remain elusive mechanistically. Here, we used acute protein degradation and quantitative genomic and proteomic approaches to investigate the primary functions of BRD2 in transcription. We report that BRD2 is required for TAF3-mediated Pol II initiation at promoters with low levels of H3K4me3 and for R-loop suppression during Pol II elongation. Single and double depletion revealed that BRD2 and BRD3 function additively, independently, or perhaps antagonistically in Pol II transcription at different promoters. Furthermore, we found that BRD2 regulates the expression of different genes during embryonic body differentiation processes by promoter priming in embryonic stem cells. Therefore, our results suggest complex interconnections between BRD2 and BRD3 at promoters to fine-tune Pol II initiation and elongation for control of cell state.


Asunto(s)
Proteómica , Factores de Transcripción , Diferenciación Celular , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Genome Res ; 29(2): 193-207, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30670628

RESUMEN

Cell behaviors are dictated by epigenetic and transcriptional programs. Little is known about how extracellular stimuli modulate these programs to reshape gene expression and control cell behavioral responses. Here, we interrogated the epigenetic and transcriptional response of endothelial cells to VEGFA treatment and found rapid chromatin changes that mediate broad transcriptomic alterations. VEGFA-responsive genes were associated with active promoters, but changes in promoter histone marks were not tightly linked to gene expression changes. VEGFA altered transcription factor occupancy and the distal epigenetic landscape, which profoundly contributed to VEGFA-dependent changes in gene expression. Integration of gene expression, dynamic enhancer, and transcription factor occupancy changes induced by VEGFA yielded a VEGFA-regulated transcriptional regulatory network, which revealed that the small MAF transcription factors are master regulators of the VEGFA transcriptional program and angiogenesis. Collectively these results revealed that extracellular stimuli rapidly reconfigure the chromatin landscape to coordinately regulate biological responses.


Asunto(s)
Epigénesis Genética , Neovascularización Fisiológica/genética , Transcripción Genética , Factor A de Crecimiento Endotelial Vascular/fisiología , Animales , Células Cultivadas , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Humanos , Factores de Transcripción Maf/metabolismo , Masculino , Ratones , Ratones Desnudos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
8.
Molecules ; 27(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36500523

RESUMEN

Green chemistry places an emphasis on safer chemicals, waste reduction, and efficiency. Processes should be optimized with green chemistry at the forefront of decision making, embedded into research at the earliest stage. To assist in this endeavor, we present a spreadsheet that can be used to interpret reaction kinetics via Variable Time Normalization Analysis (VTNA), understand solvent effects with linear solvation energy relationships (LSER), and calculate solvent greenness. With this information, new reaction conditions can be explored in silico, calculating product conversions and green chemistry metrics prior to experiments. The application of this tool was validated with literature case studies. Reaction performance was predicted and then confirmed experimentally for examples of aza-Michael addition, Michael addition, and an amidation. The combined analytical package presented herein permits a thorough examination of chemical reactions, so that the variables that control reaction chemistry can be understood, optimized, and made greener for research and education purposes.


Asunto(s)
Tecnología Química Verde , Solventes
9.
Nature ; 512(7515): 449-52, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25164756

RESUMEN

Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Cromatina/genética , Cromatina/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Animales , Línea Celular , Centrómero/genética , Centrómero/metabolismo , Cromatina/química , Ensamble y Desensamble de Cromatina/genética , Replicación del ADN/genética , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Anotación de Secuencia Molecular , Lámina Nuclear/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas/genética , Especificidad de la Especie
10.
Genome Res ; 23(6): 917-27, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23547170

RESUMEN

Histone modifications are now well-established mediators of transcriptional programs that distinguish cell states. However, the kinetics of histone modification and their role in mediating rapid, signal-responsive gene expression changes has been little studied on a genome-wide scale. Vascular endothelial growth factor A (VEGFA), a major regulator of angiogenesis, triggers changes in transcriptional activity of human umbilical vein endothelial cells (HUVECs). Here, we used chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) to measure genome-wide changes in histone H3 acetylation at lysine 27 (H3K27ac), a marker of active enhancers, in unstimulated HUVECs and HUVECs stimulated with VEGFA for 1, 4, and 12 h. We show that sites with the greatest H3K27ac change upon stimulation were associated tightly with EP300, a histone acetyltransferase. Using the variation of H3K27ac as a novel epigenetic signature, we identified transcriptional regulatory elements that are functionally linked to angiogenesis, participate in rapid VEGFA-stimulated changes in chromatin conformation, and mediate VEGFA-induced transcriptional responses. Dynamic H3K27ac deposition and associated changes in chromatin conformation required EP300 activity instead of altered nucleosome occupancy or changes in DNase I hypersensitivity. EP300 activity was also required for a subset of dynamic H3K27ac sites to loop into proximity of promoters. Our study identified thousands of endothelial, VEGFA-responsive enhancers, demonstrating that an epigenetic signature based on the variation of a chromatin feature is a productive approach to define signal-responsive genomic elements. Further, our study implicates global epigenetic modifications in rapid, signal-responsive transcriptional regulation.


Asunto(s)
Proteína p300 Asociada a E1A/metabolismo , Células Endoteliales/metabolismo , Elementos de Facilitación Genéticos , Histonas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Acetilación , Sitios de Unión , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Análisis por Conglomerados , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Motivos de Nucleótidos , Unión Proteica , Elementos de Respuesta , Factores de Transcripción/metabolismo
11.
Proc Natl Acad Sci U S A ; 110(38): 15395-400, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24003143

RESUMEN

Transcriptional profiling is a useful strategy to study development and disease. Approaches to isolate RNA from specific cell types, or from specific cellular compartments, would extend the power of this strategy. Previous work has shown that isolation of genetically tagged ribosomes (translating ribosome affinity purification; TRAP) is an effective means to isolate ribosome-bound RNA selectively from transgene-expressing cells. However, widespread application of this technology has been limited by available transgenic mouse lines. Here we characterize a TRAP allele (Rosa26(fsTRAP)) that makes this approach more widely accessible. We show that endothelium-specific activation of Rosa26(fsTRAP) identifies endothelial cell-enriched transcripts, and that cardiomyocyte-restricted TRAP is a useful means to identify genes that are differentially expressed in cardiomyocytes in a disease model. Furthermore, we show that TRAP is an effective means for studying translational regulation, and that several nuclear-encoded mitochondrial genes are under strong translational control. Our analysis of ribosome-bound transcripts also shows that a subset of long intergenic noncoding RNAs are weakly ribosome-bound, but that the majority of noncoding RNAs, including most long intergenic noncoding RNAs, are ribosome-bound to the same extent as coding transcripts. Together, these data show that the TRAP strategy and the Rosa26(fsTRAP) allele will be useful tools to probe cell type-specific transcriptomes, study translational regulation, and probe ribosome binding of noncoding RNAs.


Asunto(s)
Alelos , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/fisiología , ARN Ribosómico/aislamiento & purificación , ARN no Traducido/genética , Ribosomas/genética , Transcriptoma/genética , Animales , Western Blotting , Cartilla de ADN/genética , Ecocardiografía , Proteínas Fluorescentes Verdes/metabolismo , Inmunoprecipitación , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína Ribosómica L10 , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
12.
J Biotechnol ; 396: 1-9, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39395641

RESUMEN

Given the urge to accelerate the substitution of petrol-derived solvents not only in more traditional fields like pharmaceuticals, personal care, or electronics but also in innovative research processes, this work focuses on the utilisation of four biobased solvents as media for the enzymatic synthesis of aliphatic-aromatic polyesters. As building blocks, the lignin-derived diethyl-2,4-pyridinedicarboxylate was selected as the potentially biobased, aromatic component while more classical diols such as 1,4-butanediol and 1,8-octanediol were used as the aliphatic portion. Results show that among the tested green solvents (cyclohexanone, phenetole, anisole and eucalyptol), the most suitable medium for lipase B from Candida antarctica-catalysed polycondensation reactions was eucalyptol that allowed reach monomer conversions >95 % and number average molecular weights up to 3500 g·mol-1. On the other hand, cyclohexanone led to the lowest monomer conversions (<80 %) and molecular weights (Mn<500 g·mol-1) confirming once again the unsuitability of ketone-containing solvents for enzymatic esterification and transesterification reactions. The lipase could be used up to three times, in eucalyptol as a solvent, without a significant decrease in monomer conversion or molecular weight.

13.
Hum Mol Genet ; 20(5): 962-74, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21156717

RESUMEN

Clinical barriers to stem-cell therapy include the need for efficient derivation of histocompatible stem cells and the zoonotic risk inherent to human stem-cell xenoculture on mouse feeder cells. We describe a system for efficiently deriving induced pluripotent stem (iPS) cells from human and mouse amniocytes, and for maintaining the pluripotency of these iPS cells on mitotically inactivated feeder layers prepared from the same amniocytes. Both cellular components of this system are thus autologous to a single donor. Moreover, the use of human feeder cells reduces the risk of zoonosis. Generation of iPS cells using retroviral vectors from short- or long-term cultured human and mouse amniocytes using four factors, or two factors in mouse, occurs in 5-7 days with 0.5% efficiency. This efficiency is greater than that reported for mouse and human fibroblasts using similar viral infection approaches, and does not appear to result from selective reprogramming of Oct4(+) or c-Kit(+) amniocyte subpopulations. Derivation of amniocyte-derived iPS (AdiPS) cell colonies, which express pluripotency markers and exhibit appropriate microarray expression and DNA methylation properties, was facilitated by live immunostaining. AdiPS cells also generate embryoid bodies in vitro and teratomas in vivo. Furthermore, mouse and human amniocytes can serve as feeder layers for iPS cells and for mouse and human embryonic stem (ES) cells. Thus, human amniocytes provide an efficient source of autologous iPS cells and, as feeder cells, can also maintain iPS and ES cell pluripotency without the safety concerns associated with xenoculture.


Asunto(s)
Amnios/citología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Animales , Técnicas de Cultivo de Célula/instrumentación , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción de Octámeros/genética , Factores de Transcripción de Octámeros/metabolismo
14.
Mar Drugs ; 11(9): 3258-71, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-24065164

RESUMEN

Pseudopterosin A (PsA) treatment of growth factor depleted human umbilical vein endothelial cell (HUVEC) cultures formulated in hydroxypropyl-ß-cyclodextrin (HPßCD) for 42 h unexpectedly produced a 25% increase in cell proliferation (EC50 = 1.34 × 10⁻8 M). Analysis of dose response curves revealed pseudo-first order saturation kinetics, and the uncoupling of cytotoxicity from cell proliferation, thereby resulting in a widening of the therapeutic index. The formulation of PsA into HPßCD produced a 200-fold increase in potency over a DMSO formulation; we propose this could result from a constrained presentation of PsA to the receptor, which would limit non-specific binding. These results support the hypothesis that the non-specific receptor binding of PsA when formulated in DMSO has ostensibly masked prior estimates of specific activity, potency, and mechanism. Collectively, these results suggest that the formulation of PsA and compounds of similar chemical properties in HPßCD could result in significant pharmacological findings that may otherwise be obscured when using solvents such as DMSO.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Ciclodextrinas/química , Ciclodextrinas/farmacología , Diterpenos/química , Diterpenos/farmacología , Glicósidos/química , Glicósidos/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Química Farmacéutica/métodos , Humanos
15.
Nat Commun ; 13(1): 4345, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896549

RESUMEN

Heart failure with reduced ejection fraction (HFrEF) is associated with high mortality, highlighting an urgent need for new therapeutic strategies. As stress-activated cardiac signaling cascades converge on the nucleus to drive maladaptive gene programs, interdicting pathological transcription is a conceptually attractive approach for HFrEF therapy. Here, we demonstrate that CDK7/12/13 are critical regulators of transcription activation in the heart that can be pharmacologically inhibited to improve HFrEF. CDK7/12/13 inhibition using the first-in-class inhibitor THZ1 or RNAi blocks stress-induced transcription and pathologic hypertrophy in cultured rodent cardiomyocytes. THZ1 potently attenuates adverse cardiac remodeling and HFrEF pathogenesis in mice and blocks cardinal features of disease in human iPSC-derived cardiomyocytes. THZ1 suppresses Pol II enrichment at stress-transactivated cardiac genes and inhibits a specific pathologic gene program in the failing mouse heart. These data identify CDK7/12/13 as druggable regulators of cardiac gene transactivation during disease-related stress, suggesting that HFrEF features a critical dependency on transcription that can be therapeutically exploited.


Asunto(s)
Quinasas Ciclina-Dependientes , Insuficiencia Cardíaca , Animales , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/genética , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Humanos , Ratones , ARN Polimerasa II , Volumen Sistólico
16.
Appl Opt ; 50(13): 1843-9, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21532662

RESUMEN

We present a polymeric-based Fabry-Perot optofluidic sensor fabricated by combining direct laser machining and hot embossing. This technique provides a more elegant solution to conventional hot embossing by increasing the production rate, improving the reproducibility, and further reducing the cost, providing a large working area and flexibility in design modification and customization. As a proof of concept, a Fabry-Perot (F-P) optofluidic sensor was fabricated in polymethyl methacrylate (PMMA) from a micromachined stamp. The experimental results of the sensor agree well with analytical calculations and show a sensitivity of 2.13×10⁻³ RIU/nm for fluid refractive index change.


Asunto(s)
Rayos Láser , Diseño de Equipo , Oro/química , Calor , Ensayo de Materiales , Microfluídica , Óptica y Fotónica , Polímeros/química , Polimetil Metacrilato/química , Refractometría , Reproducibilidad de los Resultados , Espectrofotometría/métodos
17.
Lab Chip ; 10(22): 3054-7, 2010 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-20871882

RESUMEN

A compact microfluidic device with 96 microchambers allocated within four circular units was designed and examined for cell distribution. In each unit, cells were distributed to the surrounding chambers radially from the center. The circular arrangement of the chambers makes the design simple and compact. A controllable and quantitative cell distribution is achievable in this device. This design is significant to the microfluidic applications where controllable distribution of cells in multipule microchambers is demanded.


Asunto(s)
Separación Celular/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Células HeLa , Humanos , Microesferas , Polimetil Metacrilato
18.
Opt Express ; 18(8): 7611-6, 2010 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-20588600

RESUMEN

We present an optical tweezer sensor for shear stress mapping in microfluidic systems of different internal geometries. The sensor is able to measure the shear stress acting on microspheres of different sizes that model cell based biological operations. Without the need for a spatial modulator or a holographic disk, the sensor allows for direct shear stress detection at arbitrary positions in straight and curved microfluidic devices. Analytical calculations are carried out and compared with the experimental results. It is observed that a decrease in the microsphere size results in an increase in the shear stress the particle experiences.

19.
Lab Chip ; 9(10): 1334-6, 2009 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-19417896

RESUMEN

The shaping of laser beams has developed into a powerful tool for optical micromanipulation. In this context, Airy and parabolic laser beams which follow curved trajectories have drawn considerable attention. These beams may allow clearing of microparticles through particle transport along curved paths, a concept termed "optically mediated particle clearing (OMPC)." In this communication we apply this concept to microparticles and cells within specially designed microwells. Our results open novel perspectives for the redistribution of cells between different media within a microfluidic environment.

20.
Nanotechnology ; 20(10): 105601, 2009 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-19417521

RESUMEN

A microfluidic microreactor for the synthesis of gold nanorods is fabricated using femtosecond pulse laser microfabrication techniques. Femtosecond pulse lasers are able to etch a wide range of materials that are required for a microreactor, from the photomasks to the microheaters. The heating of the fluid in the microreactor is achieved through the design and fabrication of a microscale heating element incorporated onto the bottom surface of the microreactor which is capable of reaching temperatures greater than 130 degrees C. Computational fluid dynamic simulations of the heating profile of an optimized microreactor show increased heating performance with respect to a serpentine microreactor. The synthesis of gold nanorods is demonstrated in the optimized microreactor, based on a flow rate of 0.5 microg min(-1).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA