Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35131941

RESUMEN

Lysine-specific demethylase 6A (KDM6A), also named UTX, is frequently mutated in bladder cancer (BCa). Although known as a tumor suppressor, KDM6A's therapeutic potential in the metastasis of BCa remains elusive. It also remains difficult to fulfill the effective up-regulation of KDM6A levels in bladder tumor tissues in situ to verify its potential in treating BCa metastasis. Here, we report a mucoadhesive messenger RNA (mRNA) nanoparticle (NP) strategy for the intravesical delivery of KDM6A-mRNA in mice bearing orthotopic Kdm6a-null BCa and show evidence of KDM6A's therapeutic potential in inhibiting the metastasis of BCa. Through this mucoadhesive mRNA NP strategy, the exposure of KDM6A-mRNA to the in situ BCa tumors can be greatly prolonged for effective expression, and the penetration can be also enhanced by adhering to the bladder for sustained delivery. This mRNA NP strategy is also demonstrated to be effective for combination cancer therapy with other clinically approved drugs (e.g., elemene), which could further enhance therapeutic outcomes. Our findings not only report intravesical delivery of mRNA via a mucoadhesive mRNA NP strategy but also provide the proof-of-concept for the usefulness of these mRNA NPs as tools in both mechanistic understanding and translational study of bladder-related diseases.


Asunto(s)
Histona Demetilasas/farmacología , Nanopartículas/química , Metástasis de la Neoplasia/prevención & control , ARN Mensajero/farmacología , Adhesividad , Administración Intravesical , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Terapia Genética , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Ratones , Ratones Desnudos , Membrana Mucosa , Neoplasias Experimentales/terapia , ARN Mensajero/administración & dosificación , ARN Mensajero/metabolismo , Neoplasias de la Vejiga Urinaria
2.
Nat Commun ; 12(1): 1124, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602928

RESUMEN

Clay-based nanomaterials, especially 2:1 aluminosilicates such as vermiculite, biotite, and illite, have demonstrated great potential in various fields. However, their characteristic sandwiched structures and the lack of effective methods to exfoliate two-dimensional (2D) functional core layers (FCLs) greatly limit their future applications. Herein, we present a universal wet-chemical exfoliation method based on alkali etching that can intelligently "capture" the ultrathin and biocompatible FCLs (MgO and Fe2O3) sandwiched between two identical tetrahedral layers (SiO2 and Al2O3) from vermiculite. Without the sandwich structures that shielded their active sites, the obtained FCL nanosheets (NSs) exhibit a tunable and appropriate electron band structure (with the bandgap decreased from 2.0 eV to 1.4 eV), a conductive band that increased from -0.4 eV to -0.6 eV, and excellent light response characteristics. The great properties of 2D FCL NSs endow them with exciting potential in diverse applications including energy, photocatalysis, and biomedical engineering. This study specifically highlights their application in cancer theranostics as an example, potentially serving as a prelude to future extensive studies of 2D FCL NSs.


Asunto(s)
Silicatos de Aluminio/química , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/terapia , Nanomedicina Teranóstica , Animales , Antineoplásicos/farmacología , Células Hep G2 , Humanos , Luz , Ratones Endogámicos C57BL , Nanopartículas/ultraestructura , Neoplasias/patología , Fotoquimioterapia , Terapia Fototérmica , Polietilenglicoles/química , Especies Reactivas de Oxígeno/química , Temperatura , Distribución Tisular/efectos de los fármacos
3.
Front Pharmacol ; 10: 1573, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038249

RESUMEN

Two-dimensional (2D) nanosheets are characterized by their ultra-thin structure which sets them apart from their bulk materials. Due to this unique 2D structure, they have a high surface-to-volume ratio that can be beneficial for the delivery of various drugs including therapeutic DNAs and RNAs. In addition, various 2D materials exhibit excellent photothermal conversion efficiency when exposed to the near infrared (NIR) light. Therefore, this 2D nanosheet-based photonic nanomedicine has been gaining tremendous attention as both gene delivering vehicles and photothermal agents, which create synergistic effects in the treatment of different diseases. In this review, we briefly provide an overview of the following two parts regarding this type of photonic nanomedicine: (1) mechanism and advantages of nanosheets in gene delivery and photothermal therapy, respectively. (2) mechanism of synergistic effects in nanosheet-mediated combined gene and photothermal therapies and their examples in a few representative nanosheets (e.g., graphene oxide, black phosphorus, and translational metal dichalcogenide). We also expect to provide some deep insights into the possible opportunities associated with the emerging 2D nanosheets for synergistic nanomedicine research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA