Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 612(7941): 720-724, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477530

RESUMEN

Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury1-4. These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries5. Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.


Asunto(s)
Consumo de Bebidas Alcohólicas , Predisposición Genética a la Enfermedad , Variación Genética , Internacionalidad , Herencia Multifactorial , Uso de Tabaco , Humanos , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Herencia Multifactorial/genética , Factores de Riesgo , Uso de Tabaco/genética , Consumo de Bebidas Alcohólicas/genética , Transcriptoma , Tamaño de la Muestra , Sitios Genéticos/genética , Europa (Continente)/etnología
2.
Nature ; 586(7831): 763-768, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33057201

RESUMEN

Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown1. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer2-4 and coronary heart disease5-this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP)6. Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues.


Asunto(s)
Hematopoyesis Clonal/genética , Predisposición Genética a la Enfermedad , Genoma Humano/genética , Secuenciación Completa del Genoma , Adulto , África/etnología , Anciano , Anciano de 80 o más Años , Población Negra/genética , Autorrenovación de las Células/genética , Proteínas de Unión al ADN/genética , Dioxigenasas , Femenino , Mutación de Línea Germinal/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Persona de Mediana Edad , National Heart, Lung, and Blood Institute (U.S.) , Fenotipo , Medicina de Precisión , Proteínas Proto-Oncogénicas/genética , Proteínas de Motivos Tripartitos/genética , Estados Unidos , alfa Carioferinas/genética
3.
Circulation ; 146(16): 1225-1242, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36154123

RESUMEN

BACKGROUND: Venous thromboembolism (VTE) is a life-threatening vascular event with environmental and genetic determinants. Recent VTE genome-wide association studies (GWAS) meta-analyses involved nearly 30 000 VTE cases and identified up to 40 genetic loci associated with VTE risk, including loci not previously suspected to play a role in hemostasis. The aim of our research was to expand discovery of new genetic loci associated with VTE by using cross-ancestry genomic resources. METHODS: We present new cross-ancestry meta-analyzed GWAS results involving up to 81 669 VTE cases from 30 studies, with replication of novel loci in independent populations and loci characterization through in silico genomic interrogations. RESULTS: In our genetic discovery effort that included 55 330 participants with VTE (47 822 European, 6320 African, and 1188 Hispanic ancestry), we identified 48 novel associations, of which 34 were replicated after correction for multiple testing. In our combined discovery-replication analysis (81 669 VTE participants) and ancestry-stratified meta-analyses (European, African, and Hispanic), we identified another 44 novel associations, which are new candidate VTE-associated loci requiring replication. In total, across all GWAS meta-analyses, we identified 135 independent genomic loci significantly associated with VTE risk. A genetic risk score of the significantly associated loci in Europeans identified a 6-fold increase in risk for those in the top 1% of scores compared with those with average scores. We also identified 31 novel transcript associations in transcriptome-wide association studies and 8 novel candidate genes with protein quantitative-trait locus Mendelian randomization analyses. In silico interrogations of hemostasis and hematology traits and a large phenome-wide association analysis of the 135 GWAS loci provided insights to biological pathways contributing to VTE, with some loci contributing to VTE through well-characterized coagulation pathways and others providing new data on the role of hematology traits, particularly platelet function. Many of the replicated loci are outside of known or currently hypothesized pathways to thrombosis. CONCLUSIONS: Our cross-ancestry GWAS meta-analyses identified new loci associated with VTE. These findings highlight new pathways to thrombosis and provide novel molecules that may be useful in the development of improved antithrombosis treatments.


Asunto(s)
Trombosis , Tromboembolia Venosa , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genómica , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Trombosis/genética , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/genética
5.
Am J Epidemiol ; 190(10): 1977-1992, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33861317

RESUMEN

Genotype-phenotype association studies often combine phenotype data from multiple studies to increase statistical power. Harmonization of the data usually requires substantial effort due to heterogeneity in phenotype definitions, study design, data collection procedures, and data-set organization. Here we describe a centralized system for phenotype harmonization that includes input from phenotype domain and study experts, quality control, documentation, reproducible results, and data-sharing mechanisms. This system was developed for the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program, which is generating genomic and other -omics data for more than 80 studies with extensive phenotype data. To date, 63 phenotypes have been harmonized across thousands of participants (recruited in 1948-2012) from up to 17 studies per phenotype. Here we discuss challenges in this undertaking and how they were addressed. The harmonized phenotype data and associated documentation have been submitted to National Institutes of Health data repositories for controlled access by the scientific community. We also provide materials to facilitate future harmonization efforts by the community, which include 1) the software code used to generate the 63 harmonized phenotypes, enabling others to reproduce, modify, or extend these harmonizations to additional studies, and 2) the results of labeling thousands of phenotype variables with controlled vocabulary terms.


Asunto(s)
Estudios de Asociación Genética/métodos , Fenómica/métodos , Medicina de Precisión/métodos , Agregación de Datos , Humanos , Difusión de la Información , National Heart, Lung, and Blood Institute (U.S.) , Fenotipo , Evaluación de Programas y Proyectos de Salud , Estados Unidos
6.
J Hepatol ; 75(3): 572-581, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34033851

RESUMEN

BACKGROUNDS & AIMS: Primary biliary cholangitis (PBC) is a chronic liver disease in which autoimmune destruction of the small intrahepatic bile ducts eventually leads to cirrhosis. Many patients have inadequate response to licensed medications, motivating the search for novel therapies. Previous genome-wide association studies (GWAS) and meta-analyses (GWMA) of PBC have identified numerous risk loci for this condition, providing insight into its aetiology. We undertook the largest GWMA of PBC to date, aiming to identify additional risk loci and prioritise candidate genes for in silico drug efficacy screening. METHODS: We combined new and existing genotype data for 10,516 cases and 20,772 controls from 5 European and 2 East Asian cohorts. RESULTS: We identified 56 genome-wide significant loci (20 novel) including 46 in European, 13 in Asian, and 41 in combined cohorts; and a 57th genome-wide significant locus (also novel) in conditional analysis of the European cohorts. Candidate genes at newly identified loci include FCRL3, INAVA, PRDM1, IRF7, CCR6, CD226, and IL12RB1, which each play key roles in immunity. Pathway analysis reiterated the likely importance of pattern recognition receptor and TNF signalling, JAK-STAT signalling, and differentiation of T helper (TH)1 and TH17 cells in the pathogenesis of this disease. Drug efficacy screening identified several medications predicted to be therapeutic in PBC, some of which are well-established in the treatment of other autoimmune disorders. CONCLUSIONS: This study has identified additional risk loci for PBC, provided a hierarchy of agents that could be trialled in this condition, and emphasised the value of genetic and genomic approaches to drug discovery in complex disorders. LAY SUMMARY: Primary biliary cholangitis (PBC) is a chronic liver disease that eventually leads to cirrhosis. In this study, we analysed genetic information from 10,516 people with PBC and 20,772 healthy individuals recruited in Canada, China, Italy, Japan, the UK, or the USA. We identified several genetic regions associated with PBC. Each of these regions contains several genes. For each region, we used diverse sources of evidence to help us choose the gene most likely to be involved in causing PBC. We used these 'candidate genes' to help us identify medications that are currently used for treatment of other conditions, which might also be useful for treatment of PBC.


Asunto(s)
Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Cirrosis Hepática Biliar/tratamiento farmacológico , Cirrosis Hepática Biliar/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos
7.
Blood ; 134(19): 1645-1657, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31420334

RESUMEN

Venous thromboembolism (VTE) is a significant contributor to morbidity and mortality. To advance our understanding of the biology contributing to VTE, we conducted a genome-wide association study (GWAS) of VTE and a transcriptome-wide association study (TWAS) based on imputed gene expression from whole blood and liver. We meta-analyzed GWAS data from 18 studies for 30 234 VTE cases and 172 122 controls and assessed the association between 12 923 718 genetic variants and VTE. We generated variant prediction scores of gene expression from whole blood and liver tissue and assessed them for association with VTE. Mendelian randomization analyses were conducted for traits genetically associated with novel VTE loci. We identified 34 independent genetic signals for VTE risk from GWAS meta-analysis, of which 14 are newly reported associations. This included 11 newly associated genetic loci (C1orf198, PLEK, OSMR-AS1, NUGGC/SCARA5, GRK5, MPHOSPH9, ARID4A, PLCG2, SMG6, EIF5A, and STX10) of which 6 replicated, and 3 new independent signals in 3 known genes. Further, TWAS identified 5 additional genetic loci with imputed gene expression levels differing between cases and controls in whole blood (SH2B3, SPSB1, RP11-747H7.3, RP4-737E23.2) and in liver (ERAP1). At some GWAS loci, we found suggestive evidence that the VTE association signal for novel and previously known regions colocalized with expression quantitative trait locus signals. Mendelian randomization analyses suggested that blood traits may contribute to the underlying risk of VTE. To conclude, we identified 16 novel susceptibility loci for VTE; for some loci, the association signals are likely mediated through gene expression of nearby genes.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Tromboembolia Venosa/genética , Estudio de Asociación del Genoma Completo , Humanos
8.
Stat Appl Genet Mol Biol ; 19(2)2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32374294

RESUMEN

Genome wide association study (GWAS) is becoming fundamental in the arduous task of deciphering the etiology of complex diseases. The majority of the statistical models used to address the genes-disease association consider a single response variable. However, it is common for certain diseases to have correlated phenotypes such as in cardiovascular diseases. Usually, GWAS typically sample unrelated individuals from a population and the shared familial risk factors are not investigated. In this paper, we propose to apply a bivariate model using family data that associates two phenotypes with a genetic region. Using generalized estimation equations (GEE), we model two phenotypes, either discrete, continuous or a mixture of them, as a function of genetic variables and other important covariates. We incorporate the kinship relationships into the working matrix extended to a bivariate analysis. The estimation method and the joint gene-set effect in both phenotypes are developed in this work. We also evaluate the proposed methodology with a simulation study and an application to real data.


Asunto(s)
Simulación por Computador , Estudios de Asociación Genética/métodos , Estudio de Asociación del Genoma Completo/métodos , Algoritmos , Análisis de Varianza , Índice de Masa Corporal , Simulación por Computador/estadística & datos numéricos , Bases de Datos Genéticas , Diabetes Mellitus Tipo 2/genética , Familia , Femenino , Humanos , Estudios Longitudinales , Masculino , Modelos Estadísticos , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple
9.
Genet Epidemiol ; 43(1): 63-81, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30298529

RESUMEN

The Electronic Medical Records and Genomics (eMERGE) network is a network of medical centers with electronic medical records linked to existing biorepository samples for genomic discovery and genomic medicine research. The network sought to unify the genetic results from 78 Illumina and Affymetrix genotype array batches from 12 contributing medical centers for joint association analysis of 83,717 human participants. In this report, we describe the imputation of eMERGE results and methods to create the unified imputed merged set of genome-wide variant genotype data. We imputed the data using the Michigan Imputation Server, which provides a missing single-nucleotide variant genotype imputation service using the minimac3 imputation algorithm with the Haplotype Reference Consortium genotype reference set. We describe the quality control and filtering steps used in the generation of this data set and suggest generalizable quality thresholds for imputation and phenotype association studies. To test the merged imputed genotype set, we replicated a previously reported chromosome 6 HLA-B herpes zoster (shingles) association and discovered a novel zoster-associated loci in an epigenetic binding site near the terminus of chromosome 3 (3p29).


Asunto(s)
Registros Electrónicos de Salud , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Herpes Zóster/genética , Algoritmos , Población Negra/genética , Cromosomas Humanos/genética , Femenino , Haplotipos/genética , Homocigoto , Humanos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal , Población Blanca/genética
10.
Circ Res ; 120(2): 341-353, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-27899403

RESUMEN

RATIONALE: Abdominal aortic aneurysm (AAA) is a complex disease with both genetic and environmental risk factors. Together, 6 previously identified risk loci only explain a small proportion of the heritability of AAA. OBJECTIVE: To identify additional AAA risk loci using data from all available genome-wide association studies. METHODS AND RESULTS: Through a meta-analysis of 6 genome-wide association study data sets and a validation study totaling 10 204 cases and 107 766 controls, we identified 4 new AAA risk loci: 1q32.3 (SMYD2), 13q12.11 (LINC00540), 20q13.12 (near PCIF1/MMP9/ZNF335), and 21q22.2 (ERG). In various database searches, we observed no new associations between the lead AAA single nucleotide polymorphisms and coronary artery disease, blood pressure, lipids, or diabetes mellitus. Network analyses identified ERG, IL6R, and LDLR as modifiers of MMP9, with a direct interaction between ERG and MMP9. CONCLUSIONS: The 4 new risk loci for AAA seem to be specific for AAA compared with other cardiovascular diseases and related traits suggesting that traditional cardiovascular risk factor management may only have limited value in preventing the progression of aneurysmal disease.


Asunto(s)
Aneurisma de la Aorta Abdominal/diagnóstico , Aneurisma de la Aorta Abdominal/genética , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Aneurisma de la Aorta Abdominal/epidemiología , Predisposición Genética a la Enfermedad/epidemiología , Variación Genética/genética , Estudio de Asociación del Genoma Completo/tendencias , Humanos
11.
Carcinogenesis ; 39(9): 1135-1140, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-29924316

RESUMEN

To identify genetic variation associated with lung cancer risk, we performed a genome-wide association analysis of 685 lung cancer cases that had a family history of two or more first or second degree relatives compared with 744 controls without lung cancer that were genotyped on an Illumina Human OmniExpressExome-8v1 array. To ensure robust results, we further evaluated these findings using data from six additional studies that were assembled through the Transdisciplinary Research on Cancer of the Lung Consortium comprising 1993 familial cases and 33 690 controls. We performed a meta-analysis after imputation of all variants using the 1000 Genomes Project Phase 1 (version 3 release date September 2013). Analyses were conducted for 9 327 222 SNPs integrating data from the two sources. A novel variant on chromosome 4p15.31 near the LCORL gene and an imputed rare variant intergenic between CDKN2A and IFNA8 on chromosome 9p21.3 were identified at a genome-wide level of significance for squamous cell carcinomas. Additionally, associations of CHRNA3 and CHRNA5 on chromosome 15q25.1 in sporadic lung cancer were confirmed at a genome-wide level of significance in familial lung cancer. Previously identified variants in or near CHRNA2, BRCA2, CYP2A6 for overall lung cancer, TERT, SECISPB2L and RTEL1 for adenocarcinoma and RAD52 and MHC for squamous carcinoma were significantly associated with lung cancer.


Asunto(s)
Adenocarcinoma/genética , Carcinoma de Células Escamosas/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/genética , Estudios de Casos y Controles , Cromosomas Humanos Par 15/genética , Cromosomas Humanos Par 4 , Cromosomas Humanos Par 9/genética , Humanos , Pulmón/patología , Anamnesis , Polimorfismo de Nucleótido Simple/genética
14.
Am J Hum Genet ; 96(2): 301-8, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25640678

RESUMEN

PARK2, a gene associated with Parkinson disease, is a tumor suppressor in human malignancies. Here, we show that c.823C>T (p.Arg275Trp), a germline mutation in PARK2, is present in a family with eight cases of lung cancer. The resulting amino acid change, p.Arg275Trp, is located in the highly conserved RING finger 1 domain of PARK2, which encodes an E3 ubiquitin ligase. Upon further analysis, the c.823C>T mutation was detected in three additional families affected by lung cancer. The effect size for PARK2 c.823C>T (odds ratio = 5.24) in white individuals was larger than those reported for variants from lung cancer genome-wide association studies. These data implicate this PARK2 germline mutation as a genetic susceptibility factor for lung cancer. Our results provide a rationale for further investigations of this specific mutation and gene for evaluation of the possibility of developing targeted therapies against lung cancer in individuals with PARK2 variants by compensating for the loss-of-function effect caused by the associated variation.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Neoplasias Pulmonares/genética , Ubiquitina-Proteína Ligasas/genética , Secuencia de Bases , Cartilla de ADN/genética , Exoma/genética , Femenino , Mutación de Línea Germinal/genética , Humanos , Masculino , Datos de Secuencia Molecular , Mutación Missense/genética , Oportunidad Relativa , Linaje , Análisis de Secuencia de ADN
15.
Am J Hum Genet ; 97(4): 512-20, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26365338

RESUMEN

Hereditary hemochromatosis (HH) is a common autosomal-recessive disorder associated with pathogenic HFE variants, most commonly those resulting in p.Cys282Tyr and p.His63Asp. Recommendations on returning incidental findings of HFE variants in individuals undergoing genome-scale sequencing should be informed by penetrance estimates of HH in unselected samples. We used the eMERGE Network, a multicenter cohort with genotype data linked to electronic medical records, to estimate the diagnostic rate and clinical penetrance of HH in 98 individuals homozygous for the variant coding for HFE p.Cys282Tyr and 397 compound heterozygotes with variants resulting in p.[His63Asp];[Cys282Tyr]. The diagnostic rate of HH in males was 24.4% for p.Cys282Tyr homozygotes and 3.5% for compound heterozygotes (p < 0.001); in females, it was 14.0% for p.Cys282Tyr homozygotes and 2.3% for compound heterozygotes (p < 0.001). Only males showed differences across genotypes in transferrin saturation levels (100% of homozygotes versus 37.5% of compound heterozygotes with transferrin saturation > 50%; p = 0.003), serum ferritin levels (77.8% versus 33.3% with serum ferritin > 300 ng/ml; p = 0.006), and diabetes (44.7% versus 28.0%; p = 0.03). No differences were found in the prevalence of heart disease, arthritis, or liver disease, except for the rate of liver biopsy (10.9% versus 1.8% [p = 0.013] in males; 9.1% versus 2% [p = 0.035] in females). Given the higher rate of HH diagnosis than in prior studies, the high penetrance of iron overload, and the frequency of at-risk genotypes, in addition to other suggested actionable adult-onset genetic conditions, opportunistic screening should be considered for p.[Cys282Tyr];[Cys282Tyr] individuals with existing genomic data.


Asunto(s)
Variación Genética/genética , Hemocromatosis/epidemiología , Hemocromatosis/genética , Antígenos de Histocompatibilidad Clase I/genética , Proteínas de la Membrana/genética , Adulto , Anciano , Sustitución de Aminoácidos , Niño , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Genotipo , Hemocromatosis/diagnóstico , Proteína de la Hemocromatosis , Heterocigoto , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Penetrancia , Pronóstico , Estados Unidos/epidemiología
16.
Am J Hum Genet ; 96(4): 532-42, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25772935

RESUMEN

Venous thromboembolism (VTE), the third leading cause of cardiovascular mortality, is a complex thrombotic disorder with environmental and genetic determinants. Although several genetic variants have been found associated with VTE, they explain a minor proportion of VTE risk in cases. We undertook a meta-analysis of genome-wide association studies (GWASs) to identify additional VTE susceptibility genes. Twelve GWASs totaling 7,507 VTE case subjects and 52,632 control subjects formed our discovery stage where 6,751,884 SNPs were tested for association with VTE. Nine loci reached the genome-wide significance level of 5 × 10(-8) including six already known to associate with VTE (ABO, F2, F5, F11, FGG, and PROCR) and three unsuspected loci. SNPs mapping to these latter were selected for replication in three independent case-control studies totaling 3,009 VTE-affected individuals and 2,586 control subjects. This strategy led to the identification and replication of two VTE-associated loci, TSPAN15 and SLC44A2, with lead risk alleles associated with odds ratio for disease of 1.31 (p = 1.67 × 10(-16)) and 1.21 (p = 2.75 × 10(-15)), respectively. The lead SNP at the TSPAN15 locus is the intronic rs78707713 and the lead SLC44A2 SNP is the non-synonymous rs2288904 previously shown to associate with transfusion-related acute lung injury. We further showed that these two variants did not associate with known hemostatic plasma markers. TSPAN15 and SLC44A2 do not belong to conventional pathways for thrombosis and have not been associated to other cardiovascular diseases nor related quantitative biomarkers. Our findings uncovered unexpected actors of VTE etiology and pave the way for novel mechanistic concepts of VTE pathophysiology.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Glicoproteínas de Membrana/genética , Proteínas de Transporte de Membrana/genética , Tetraspaninas/genética , Tromboembolia Venosa/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Oportunidad Relativa
17.
BMC Genet ; 19(Suppl 1): 81, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30255819

RESUMEN

BACKGROUND: GAW20 working group 5 brought together researchers who contributed 7 papers with the aim of evaluating methods to detect genetic by epigenetic interactions. GAW20 distributed real data from the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study, including single-nucleotide polymorphism (SNP) markers, methylation (cytosine-phosphate-guanine [CpG]) markers, and phenotype information on up to 995 individuals. In addition, a simulated data set based on the real data was provided. RESULTS: The 7 contributed papers analyzed these data sets with a number of different statistical methods, including generalized linear mixed models, mediation analysis, machine learning, W-test, and sparsity-inducing regularized regression. These methods generally appeared to perform well. Several papers confirmed a number of causative SNPs in either the large number of simulation sets or the real data on chromosome 11. Findings were also reported for different SNPs, CpG sites, and SNP-CpG site interaction pairs. CONCLUSIONS: In the simulation (200 replications), power appeared generally good for large interaction effects, but smaller effects will require larger studies or consortium collaboration for realizing a sufficient power.


Asunto(s)
Metilación de ADN , Estudio de Asociación del Genoma Completo , Islas de CpG , Genotipo , Humanos , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/genética , Hipoglucemiantes/uso terapéutico , Aprendizaje Automático , Polimorfismo de Nucleótido Simple
18.
J Am Soc Nephrol ; 28(8): 2311-2321, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28360221

RESUMEN

Disorders of water balance, an excess or deficit of total body water relative to body electrolyte content, are common and ascertained by plasma hypo- or hypernatremia, respectively. We performed a two-stage genome-wide association study meta-analysis on plasma sodium concentration in 45,889 individuals of European descent (stage 1 discovery) and 17,637 additional individuals of European descent (stage 2 replication), and a transethnic meta-analysis of replicated single-nucleotide polymorphisms in 79,506 individuals (63,526 individuals of European descent, 8765 individuals of Asian Indian descent, and 7215 individuals of African descent). In stage 1, we identified eight loci associated with plasma sodium concentration at P<5.0 × 10-6 Of these, rs9980 at NFAT5 replicated in stage 2 meta-analysis (P=3.1 × 10-5), with combined stages 1 and 2 genome-wide significance of P=5.6 × 10-10 Transethnic meta-analysis further supported the association at rs9980 (P=5.9 × 10-12). Additionally, rs16846053 at SLC4A10 showed nominally, but not genome-wide, significant association in combined stages 1 and 2 meta-analysis (P=6.7 × 10-8). NFAT5 encodes a ubiquitously expressed transcription factor that coordinates the intracellular response to hypertonic stress but was not previously implicated in the regulation of systemic water balance. SLC4A10 encodes a sodium bicarbonate transporter with a brain-restricted expression pattern, and variant rs16846053 affects a putative intronic NFAT5 DNA binding motif. The lead variants for NFAT5 and SLC4A10 are cis expression quantitative trait loci in tissues of the central nervous system and relevant to transcriptional regulation. Thus, genetic variation in NFAT5 and SLC4A10 expression and function in the central nervous system may affect the regulation of systemic water balance.


Asunto(s)
Sitios Genéticos , Plasma/química , Simportadores de Sodio-Bicarbonato/genética , Sodio/análisis , Factores de Transcripción/genética , Desequilibrio Hidroelectrolítico/sangre , Desequilibrio Hidroelectrolítico/genética , Anciano , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Concentración Osmolar , Grupos Raciales
19.
Genet Epidemiol ; 40(3): 253-63, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27027518

RESUMEN

The goal of this paper is to present an implementation of stochastic search variable selection (SSVS) to multilevel model from item response theory (IRT). As experimental settings get more complex and models are required to integrate multiple (and sometimes massive) sources of information, a model that can jointly summarize and select the most relevant characteristics can provide better interpretation and a deeper insight into the problem. A multilevel IRT model recently proposed in the literature for modeling multifactorial diseases is extended to perform variable selection in the presence of thousands of covariates using SSVS. We derive conditional distributions required for such a task as well as an acceptance-rejection step that allows for the SSVS in high dimensional settings using a Markov Chain Monte Carlo algorithm. We validate the variable selection procedure through simulation studies, and illustrate its application on a study with genetic markers associated with the metabolic syndrome.


Asunto(s)
Teorema de Bayes , Genómica/métodos , Modelos Genéticos , Algoritmos , Marcadores Genéticos/genética , Humanos , Cadenas de Markov , Síndrome Metabólico/genética , Modelos Estadísticos , Método de Montecarlo , Polimorfismo de Nucleótido Simple/genética , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA