Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Remote Sens Environ ; 2512020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36082362

RESUMEN

The ESA's forthcoming FLuorescence EXplorer (FLEX) mission is dedicated to the global monitoring of the vegetation's chlorophyll fluorescence by means of an imaging spectrometer, FLORIS. In order to properly interpret the fluorescence signal in relation to photosynthetic activity, essential vegetation variables need to be retrieved concomitantly. FLEX will fly in tandem with Sentinel-3 (S3), which conveys the Ocean and Land Colour Instrument (OLCI) that is designed to characterize the atmosphere and the terrestrial vegetation at a spatial resolution of 300 m. In this work we present the retrieval models of four essential biophysical variables: (1) Leaf Area Index (LAI), (2) leaf chlorophyll content (Cab), (3) fraction of absorbed photosynthetically active radiation (fAPAR), and (4) fractional vegetation cover (FCover). These variables can be operationally inferred by hybrid retrieval approaches, which combine the generalization capabilities offered by radiative transfer models (RTMs) with the flexibility and computational efficiency of machine learning methods. The RTM SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) was used to generate a database of reflectance spectra corresponding to a large variety of canopy realizations, which served subsequently as input to train a Gaussian Process Regression (GPR) algorithm for each targeted variable. Three sets of GPR models were developed, based on different spectral band settings: (1) OLCI (21 bands between 400 and 1040 nm), (2) FLORIS (281 bands between 500 and 780 nm), and (3) their synergy. Their respective performances were assessed based on simulated reflectance scenes. Regarding the retrieval of Cab, the OLCI model gave good model performances (R2: 0.91; RMSE: 7.6 µg. cm -2), yet superior accuracies were achieved as a result of FLORIS' higher spectral resolution (R2: 0.96; RMSE: 4.8 µg. cm -2). The synergy of both datasets did not further enhance the variable retrieval. Regarding LAI, the improvement of the model performances by using only FLORIS spectra (R2: 0.87; RMSE: 1.05 m2.m-2) rather than only OLCI spectra (R2: 0.86; RMSE: 1.12 m2.m-2) was less evident but merging both data sets was more beneficial (R2: 0.88; RMSE: 1.01 m2.m-2). Finally, the three data sources gave good model performances for the retrieval of fAPAR and Fcover, with the best performing model being the Synergy model (fAPAR: R2: 0.99; RMSE: 0.02 and FCover: R2: 0.98; RMSE: 0.04). The ability of the models to process real data was subsequently demonstrated by applying the OLCI models to S3 surface reflectance products acquired over Western Europe and Argentina. Obtained maps showed consistent patterns and variable ranges, and comparison against corresponding Sentinel-2 products (coarsened to a 300 m spatial resolution) led to reasonable matches (R2: 0.5-0.7). Altogether, given the availability of the multiple data sources, the FLEX tandem mission will foster unique opportunities to quantify essential vegetation properties, and hence facilitate the interpretation of the measured fluorescence levels.

2.
Environ Model Softw ; 1272020 May.
Artículo en Inglés | MEDLINE | ID: mdl-36081485

RESUMEN

Optical remotely sensed data are typically discontinuous, with missing values due to cloud cover. Consequently, gap-filling solutions are needed for accurate crop phenology characterization. The here presented Decomposition and Analysis of Time Series software (DATimeS) expands established time series interpolation methods with a diversity of advanced machine learning fitting algorithms (e.g., Gaussian Process Regression: GPR) particularly effective for the reconstruction of multiple-seasons vegetation temporal patterns. DATimeS is freely available as a powerful image time series software that generates cloud-free composite maps and captures seasonal vegetation dynamics from regular or irregular satellite time series. This work describes the main features of DATimeS, and provides a demonstration case using Sentinel-2 Leaf Area Index time series data over a Spanish site. GPR resulted as an optimum fitting algorithm with most accurate gap-filling performance and associated uncertainties. DATimeS further quantified LAI fluctuations among multiple crop seasons and provided phenological indicators for specific crop types.

3.
Remote Sens (Basel) ; 13(8): 1419, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-36082339

RESUMEN

ESA's Eighth Earth Explorer mission "FLuorescence EXplorer" (FLEX) will be dedicated to the global monitoring of the chlorophyll fluorescence emitted by vegetation. In order to properly interpret the measured fluorescence signal, essential vegetation variables need to be retrieved concomitantly. FLEX will fly in tandem formation with Sentinel-3 (S3), which conveys the Ocean and Land Color Instrument (OLCI) that is designed to characterize the atmosphere and the terrestrial vegetation at a spatial resolution of 300 m. In support of FLEX's preparatory activities, this paper presents a first validation exercise of OLCI vegetation products against in situ data coming from the 2018 FLEXSense campaign. During this campaign, leaf chlorophyll content (LCC) and leaf area index (LAI) measurements were collected over croplands, while HyPlant DUAL images of the area were acquired at a 3 m spatial resolution. A multiscale validation strategy was pursued. First, estimates of these two variables, together with the combined canopy chlorophyll content (CCC = LCC × LAI), were obtained at the HyPlant spatial resolution and were compared against the in situ measurements. Second, the fine-scale retrieval maps from HyPlant were coarsened to the S3 spatial scale as a reference to assess the quality of the OLCI vegetation products. As an intermediary step, vegetation products extracted from Sentinel-2 data were used to compare retrievals at the in-between spatial resolution of 20 m. For all spatial scales, CCC delivered the most accurate estimates with the smallest prediction error obtained at the 300 m resolution (R2 of 0.74 and RMSE = 26.8 µg cm-2). Results of a scaling analysis suggest that CCC performs well at the different tested spatial resolutions since it presents a linear behavior across scales. LCC, on the other hand, was poorly retrieved at the 300 m scale, showing overestimated values over heterogeneous pixels. The introduction of a new LCC model integrating mixed reflectance spectra in its training enabled to improve by 16% the retrieval accuracy for this variable (RMSE = 10 µg cm-2 for the new model versus RMSE = 11.9 µg cm-2 for the former model).

4.
Remote Sens (Basel) ; 11(20): 2418, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36081655

RESUMEN

Vegetation indices (VIs) are widely used in optical remote sensing to estimate biophysical variables of vegetated surfaces. With the advent of spectroscopy technology, spectral bands can be combined in numerous ways to extract the desired information. This resulted in a plethora of proposed indices, designed for a diversity of applications and research purposes. However, it is not always clear whether they are sensitive to the variable of interest while at the same time, responding insensitive to confounding factors. Hence, to be able to quantify the robustness of VIs, a systematic evaluation is needed, thereby introducing a widest possible variety of biochemical and structural heterogeneity. Such exercise can be achieved with coupled leaf and canopy radiative transfer models (RTMs), whereby input variables can virtually simulate any vegetation scenario. With the intention of evaluating multiple VIs in an efficient way, this led us to the development of a global sensitivity analysis (GSA) toolbox dedicated to the analysis of VIs on their sensitivity towards RTM input variables. We identified VIs that are designed to be sensitive towards leaf chlorophyll content (LCC), leaf water content (LWC) and leaf area index (LAI) for common sensors of terrestrial Earth observation satellites: Landsat 8, MODIS, Sentinel-2, Sentinel-3 and the upcoming imaging spectrometer mission EnMAP. The coupled RTMs PROSAIL and PROINFORM were used for simulations of homogeneous and forest canopies respectively. GSA total sensitivity results suggest that LCC-sensitive indices respond most robust: for the great majority of scenarios, chlorophyll a + b content (Cab) drives between 75% and 82% of the indices' variability. LWC-sensitive indices were most affected by confounding variables such as Cab and LAI, although the equivalent water thickness (Cw) can drive between 25% and 50% of the indices' variability. Conversely, the majority of LAI-sensitive indices are not only sensitive to LAI but rather to a mixture of structural and biochemical variables.

5.
Insects ; 7(4)2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27754408

RESUMEN

Members of a complex of cryptic species, that correspond morphologically to the ambrosia beetle Euwallacea fornicatus (Eichhoff) (Coleoptera: Curculionidae: Scolytinae), were recently found attacking avocado (Persea americana Mill.) in Israel and California. In early 2016, an outbreak of another member of this species complex was detected infesting approximately 1500 avocado trees in an avocado orchard at Homestead, Florida. An area-wide survey was conducted in commercial avocado groves of Miami-Dade County, Florida to determine the distribution and abundance of E. nr. fornicatus, to identify different populations of E. nr. fornicatus and their fungal associates, and to assess the extent of damage to avocado trees. Ewallacea nr. fornicatus were captured in 31 of the 33 sampled sites. A sample of 35 beetles from six different locations was identified as E. nr. fornicatus sp. #2, which is genetically distinct from the species causing damage in California and Israel. Eleven fungal associates were identified: an unknown Fusarium sp., AF-8, AF-6, Graphium euwallaceae, Acremonium sp. Acremonium morum, Acremonium masseei, Elaphocordyceps sp. and three yeast species. The unknown Fusarium isolates were the most abundant and frequently found fungus species associated with adult beetles and lesions surrounding the beetle galleries. In addition to fungal associates, three bacteria species were found associated with adult E. nr. fornicatus. Visual inspections detected significant damage in only two orchards. A large number of beetles were captured in locations with no apparent damage on the avocado trees suggesting that E. nr. fornicatus are associated with other host(s) outside the groves or with dead trees or branches inside the groves. More research is needed to determine the potential threat E. nr. fornicatus and its fungal associates pose to the avocado industry and agricultural and natural ecosystems in Florida.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA