Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(8): 104986, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392854

RESUMEN

Congenital hyperinsulinism of infancy (CHI) can be caused by a deficiency of the ubiquitously expressed enzyme short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD). To test the hypothesis that SCHAD-CHI arises from a specific defect in pancreatic ß-cells, we created genetically engineered ß-cell-specific (ß-SKO) or hepatocyte-specific (L-SKO) SCHAD knockout mice. While L-SKO mice were normoglycemic, plasma glucose in ß-SKO animals was significantly reduced in the random-fed state, after overnight fasting, and following refeeding. The hypoglycemic phenotype was exacerbated when the mice were fed a diet enriched in leucine, glutamine, and alanine. Intraperitoneal injection of these three amino acids led to a rapid elevation in insulin levels in ß-SKO mice compared to controls. Consistently, treating isolated ß-SKO islets with the amino acid mixture potently enhanced insulin secretion compared to controls in a low-glucose environment. RNA sequencing of ß-SKO islets revealed reduced transcription of ß-cell identity genes and upregulation of genes involved in oxidative phosphorylation, protein metabolism, and Ca2+ handling. The ß-SKO mouse offers a useful model to interrogate the intra-islet heterogeneity of amino acid sensing given the very variable expression levels of SCHAD within different hormonal cells, with high levels in ß- and δ-cells and virtually absent α-cell expression. We conclude that the lack of SCHAD protein in ß-cells results in a hypoglycemic phenotype characterized by increased sensitivity to amino acid-stimulated insulin secretion and loss of ß-cell identity.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasa , Aminoácidos , Hiperinsulinismo Congénito , Hipoglucemia , Secreción de Insulina , Células Secretoras de Insulina , Animales , Ratones , Aminoácidos/metabolismo , Aminoácidos/farmacología , Hipoglucemia/enzimología , Hipoglucemia/genética , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Ratones Noqueados , 3-Hidroxiacil-CoA Deshidrogenasa/deficiencia , 3-Hidroxiacil-CoA Deshidrogenasa/genética , Células Secretoras de Insulina/enzimología , Hiperinsulinismo Congénito/genética
2.
Diabetologia ; 63(3): 577-587, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31897526

RESUMEN

AIMS/HYPOTHESIS: Sodium-glucose cotransporter 2 (SGLT2) inhibitors, which prevent the renal reabsorption of glucose, decrease blood glucose levels in an insulin-independent manner. We previously reported creating a mouse model of systemic inhibition of target receptors for both insulin and IGF-1 by treating animals with OSI-906, a dual insulin/IGF-1 receptor inhibitor, for 7 days. The OSI-906-treated mice exhibited an increased beta cell mass, hepatic steatosis and adipose tissue atrophy, accompanied by hyperglycaemia and hyperinsulinaemia. In the present study, we investigated the effects of an SGLT2 inhibitor, luseogliflozin, on these changes in OSI-906-treated mice. METHODS: We treated C57BL/6J male mice either with vehicle, luseogliflozin, OSI-906 or OSI-906 plus luseogliflozin for 7 days, and phenotyping was performed to determine beta cell mass and proliferation. Subsequently, we tested whether serum-derived factors have an effect on beta cell proliferation in genetically engineered beta cells, mouse islets or human islets. RESULTS: SGLT2 inhibition with luseogliflozin significantly ameliorated hyperglycaemia, but not hyperinsulinaemia, in the OSI-906-treated mice. Liver steatosis and adipose tissue atrophy induced by OSI-906 were not altered by treatment with luseogliflozin. Beta cell mass and proliferation were further increased by SGLT2 inhibition with luseogliflozin in the OSI-906-treated mice. Luseogliflozin upregulated gene expression related to the forkhead box M1 (FoxM1)/polo-like kinase 1 (PLK1)/centromere protein A (CENP-A) pathway in the islets of OSI-906-treated mice. The increase in beta cell proliferation was recapitulated in a co-culture of Irs2 knockout and Insr/IR knockout (ßIRKO) beta cells with serum from both luseogliflozin- and OSI-906-treated mice, but not after SGLT2 inhibition in beta cells. Circulating factors in both luseogliflozin- and OSI-906-treated mice promoted beta cell proliferation in both mouse islets and cadaveric human islets. CONCLUSIONS/INTERPRETATION: These results suggest that luseogliflozin can increase beta cell proliferation through the activation of the FoxM1/PLK1/CENP-A pathway via humoral factors that act in an insulin/IGF-1 receptor-independent manner.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/fisiología , Sorbitol/análogos & derivados , Animales , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Sinergismo Farmacológico , Técnicas de Inactivación de Genes , Humanos , Imidazoles/farmacología , Proteínas Sustrato del Receptor de Insulina/genética , Células Secretoras de Insulina/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Pirazinas/farmacología , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptor IGF Tipo 1/fisiología , Receptor de Insulina/antagonistas & inhibidores , Receptor de Insulina/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sorbitol/farmacología
3.
J Proteome Res ; 14(8): 3111-3122, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26151086

RESUMEN

Compensatory islet response is a distinct feature of the prediabetic insulin-resistant state in humans and rodents. To identify alterations in the islet proteome that characterize the adaptive response, we analyzed islets from 5 month old male control, high-fat diet fed (HFD), or obese ob/ob mice by LC-MS/MS and quantified ~1100 islet proteins (at least two peptides) with a false discovery rate < 1%. Significant alterations in abundance were observed for ~350 proteins among groups. The majority of alterations were common to both models, and the changes of a subset of ~40 proteins and 12 proteins were verified by targeted quantification using selected reaction monitoring and western blots, respectively. The insulin-resistant islets in both groups exhibited reduced expression of proteins controlling energy metabolism, oxidative phosphorylation, hormone processing, and secretory pathways. Conversely, an increased expression of molecules involved in protein synthesis and folding suggested effects in endoplasmic reticulum stress response, cell survival, and proliferation in both insulin-resistant models. In summary, we report a unique comparison of the islet proteome that is focused on the compensatory response in two insulin-resistant rodent models that are not overtly diabetic. These data provide a valuable resource of candidate proteins to the scientific community to undertake further studies aimed at enhancing ß-cell mass in patients with diabetes. The data are available via the MassIVE repository, under accession no. MSV000079093.


Asunto(s)
Resistencia a la Insulina , Islotes Pancreáticos/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Secuencia de Aminoácidos , Animales , Western Blotting , Cromatografía Liquida , Dieta Alta en Grasa , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Datos de Secuencia Molecular , Espectrometría de Masas en Tándem
4.
Am J Physiol Endocrinol Metab ; 307(10): E906-18, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25249504

RESUMEN

Studies in both humans and rodents suggest that maternal diabetes leads to a higher risk of the fetus developing impaired glucose tolerance and obesity during adulthood. However, the impact of hyperinsulinemia in the mother on glucose homeostasis in the offspring has not been fully explored. We aimed to determine the consequences of maternal insulin resistance on offspring metabolism and endocrine pancreas development using the LIRKO mouse model, which exhibits sustained hyperinsulinemia and transient increase in blood glucose concentrations during pregnancy. We examined control offspring born to either LIRKO or control mothers on embryonic days 13.5, 15.5, and 17.5 and postpartum days 0, 4, and 10. Control offspring born to LIRKO mothers displayed low birth weights and subsequently rapidly gained weight, and their blood glucose and plasma insulin concentrations were higher than offspring born to control mothers in early postnatal life. In addition, concentrations of plasma leptin, glucagon, and active GLP-1 were higher in control pups from LIRKO mothers. Analyses of the endocrine pancreas revealed significantly reduced ß-cell area in control offspring of LIRKO mothers shortly after birth. ß-Cell proliferation and total islet number were also lower in control offspring of LIRKO mothers during early postnatal days. Together, these data indicate that maternal hyperinsulinemia and the transient hyperglycemia impair endocrine pancreas development in the control offspring and induce multiple metabolic alterations in early postnatal life. The relatively smaller ß-cell mass/area and ß-cell proliferation in these control offspring suggest cell-autonomous epigenetic mechanisms in the regulation of islet growth and development.


Asunto(s)
Glucemia/metabolismo , Diabetes Gestacional , Hiperglucemia/metabolismo , Hiperinsulinismo/metabolismo , Resistencia a la Insulina , Islotes Pancreáticos/patología , Complicaciones del Embarazo/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Animales Recién Nacidos , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Glucagón/sangre , Péptido 1 Similar al Glucagón/sangre , Hiperglucemia/sangre , Hiperglucemia/patología , Hiperinsulinismo/sangre , Hiperinsulinismo/patología , Insulina/sangre , Células Secretoras de Insulina/citología , Leptina/sangre , Ratones , Tamaño de los Órganos , Fenotipo , Embarazo , Complicaciones del Embarazo/sangre , Complicaciones del Embarazo/patología , Efectos Tardíos de la Exposición Prenatal/sangre , Efectos Tardíos de la Exposición Prenatal/patología , Aumento de Peso
5.
J Clin Invest ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713514

RESUMEN

Pancreatic ß-cell dysfunction is a key feature of type 2 diabetes, and novel regulators of insulin secretion are desirable. Here we report that the succinate receptor (SUCNR1) is expressed in ß-cells and is up-regulated in hyperglycemic states in mice and humans. We found that succinate acts as a hormone-like metabolite and stimulates insulin secretion via a SUCNR1-Gq-PKC-dependent mechanism in human ß-cells. Mice with ß-cell-specific Sucnr1 deficiency exhibit impaired glucose tolerance and insulin secretion on a high-fat diet, indicating that SUCNR1 is essential for preserving insulin secretion in diet-induced insulin resistance. Patients with impaired glucose tolerance show an enhanced nutritional-related succinate response, which correlates with the potentiation of insulin secretion during intravenous glucose administration. These data demonstrate that the succinate/SUCNR1 axis is activated by high glucose and identify a GPCR-mediated amplifying pathway for insulin secretion relevant to the hyperinsulinemia of prediabetic states.

6.
Cell Chem Biol ; 30(9): 1144-1155.e4, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37354909

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. We recently discovered that neuronal regeneration-related protein (NREP/P311), an epigenetically regulated gene reprogrammed by parental metabolic syndrome, is downregulated in human NAFLD. To investigate the impact of NREP insufficiency, we used RNA-sequencing, lipidomics, and antibody microarrays on primary human hepatocytes. NREP knockdown induced transcriptomic remodeling that overlapped with key pathways impacted in human steatosis and steatohepatitis. Additionally, we observed enrichment of pathways involving phosphatidylinositol signaling and one-carbon metabolism. Lipidomics analyses also revealed an increase in cholesterol esters and triglycerides and decreased phosphatidylcholine levels in NREP-deficient hepatocytes. Signalomics identified calcium signaling as a potential mediator of NREP insufficiency's effects. Our results, together with the encouraging observation that several single nucleotide polymorphisms (SNPs) spanning the NREP locus are associated with metabolic traits, provide a strong rationale for targeting hepatic NREP to improve NAFLD pathophysiology.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/genética , Hepatocitos/metabolismo , Hígado/metabolismo , Metabolismo de los Lípidos , Carbono/metabolismo
7.
Elife ; 122023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37732504

RESUMEN

Pancreatic α-cells secrete glucagon, an insulin counter-regulatory peptide hormone critical for the maintenance of glucose homeostasis. Investigation of the function of human α-cells remains a challenge due to the lack of cost-effective purification methods to isolate high-quality α-cells from islets. Here, we use the reaction-based probe diacetylated Zinpyr1 (DA-ZP1) to introduce a novel and simple method for enriching live α-cells from dissociated human islet cells with ~95% purity. The α-cells, confirmed by sorting and immunostaining for glucagon, were cultured up to 10 days to form α-pseudoislets. The α-pseudoislets could be maintained in culture without significant loss of viability, and responded to glucose challenge by secreting appropriate levels of glucagon. RNA-sequencing analyses (RNA-seq) revealed that expression levels of key α-cell identity genes were sustained in culture while some of the genes such as DLK1, GSN, SMIM24 were altered in α-pseudoislets in a time-dependent manner. In conclusion, we report a method to sort human primary α-cells with high purity that can be used for downstream analyses such as functional and transcriptional studies.


Asunto(s)
Células Secretoras de Glucagón , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Glucagón/metabolismo , Transcriptoma , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucosa/metabolismo , Fluoresceínas/metabolismo , Células Secretoras de Insulina/metabolismo
8.
bioRxiv ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37577492

RESUMEN

N 6 -methyladenosine (m 6 A) is the most abundant chemical modification in mRNA, and plays important roles in human and mouse embryonic stem cell pluripotency, maintenance, and differentiation. We have recently reported, for the first time, the role of m 6 A in the postnatal control of ß-cell function in physiological states and in Type 1 and 2 Diabetes. However, the precise mechanisms by which m 6 A acts to regulate the development of human and mouse ß-cells are unexplored. Here, we show that the m 6 A landscape is dynamic during human pancreas development, and that METTL14, one of the m 6 A writer complex proteins, is essential for the early differentiation of both human and mouse ß-cells.

9.
Cell Metab ; 35(7): 1242-1260.e9, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37339634

RESUMEN

Type 1 (T1D) or type 2 diabetes (T2D) are caused by a deficit of functional insulin-producing ß cells. Thus, the identification of ß cell trophic agents could allow the development of therapeutic strategies to counteract diabetes. The discovery of SerpinB1, an elastase inhibitor that promotes human ß cell growth, prompted us to hypothesize that pancreatic elastase (PE) regulates ß cell viability. Here, we report that PE is up-regulated in acinar cells and in islets from T2D patients, and negatively impacts ß cell viability. Using high-throughput screening assays, we identified telaprevir as a potent PE inhibitor that can increase human and rodent ß cell viability in vitro and in vivo and improve glucose tolerance in insulin-resistant mice. Phospho-antibody microarrays and single-cell RNA sequencing analysis identified PAR2 and mechano-signaling pathways as potential mediators of PE. Taken together, our work highlights PE as a potential regulator of acinar-ß cell crosstalk that acts to limit ß cell viability, leading to T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Ratones , Animales , Células Acinares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Elastasa Pancreática/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Comunicación Celular
10.
bioRxiv ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37292780

RESUMEN

Brown adipose tissue (BAT) has the capacity to regulate systemic metabolism through the secretion of signaling lipids. N6-methyladenosine (m 6 A) is the most prevalent and abundant post-transcriptional mRNA modification and has been reported to regulate BAT adipogenesis and energy expenditure. In this study, we demonstrate that the absence of m 6 A methyltransferase-like 14 (METTL14), modifies the BAT secretome to initiate inter-organ communication to improve systemic insulin sensitivity. Importantly, these phenotypes are independent of UCP1-mediated energy expenditure and thermogenesis. Using lipidomics, we identified prostaglandin E2 (PGE2) and prostaglandin F2a (PGF2a) as M14 KO -BAT-secreted insulin sensitizers. Notably, circulatory PGE2 and PGF2a levels are inversely correlated with insulin sensitivity in humans. Furthermore, in vivo administration of PGE2 and PGF2a in high-fat diet-induced insulin-resistant obese mice recapitulates the phenotypes of METTL14 deficient animals. PGE2 or PGF2a improves insulin signaling by suppressing the expression of specific AKT phosphatases. Mechanistically, METTL14-mediated m 6 A installation promotes decay of transcripts encoding prostaglandin synthases and their regulators in human and mouse brown adipocytes in a YTHDF2/3-dependent manner. Taken together, these findings reveal a novel biological mechanism through which m 6 A-dependent regulation of BAT secretome regulates systemic insulin sensitivity in mice and humans. Highlights: Mettl14 KO -BAT improves systemic insulin sensitivity via inter-organ communication; PGE2 and PGF2a are BAT-secreted insulin sensitizers and browning inducers;PGE2 and PGF2a sensitize insulin responses through PGE2-EP-pAKT and PGF2a-FP-AKT axis; METTL14-mediated m 6 A installation selectively destabilizes prostaglandin synthases and their regulator transcripts; Targeting METTL14 in BAT has therapeutic potential to enhance systemic insulin sensitivity.

11.
bioRxiv ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36824909

RESUMEN

Type 1 Diabetes (T1D) is characterized by autoimmune-mediated destruction of insulin-producing ß-cells. Several observations have renewed interest in the innate immune system as an initiator of the disease process against ß-cells. Here, we show that N 6 -Methyladenosine (m 6 A) is an adaptive ß-cell safeguard mechanism that accelerates mRNA decay of the 2'-5'-oligoadenylate synthetase (OAS) genes to control the antiviral innate immune response at T1D onset. m 6 A writer methyltransferase 3 (METTL3) levels increase drastically in human and mouse ß-cells at T1D onset but rapidly decline with disease progression. Treatment of human islets and EndoC-ßH1 cells with pro-inflammatory cytokines interleukin-1 ß and interferon α mimicked the METTL3 upregulation seen at T1D onset. Furthermore, m 6 A-sequencing revealed the m 6 A hypermethylation of several key innate immune mediators including OAS1, OAS2, and OAS3 in human islets and EndoC-ßH1 cells challenged with cytokines. METTL3 silencing in human pseudoislets or EndoC-ßH1 cells enhanced OAS levels by increasing its mRNA stability upon cytokine challenge. Consistently, in vivo gene therapy, to prolong Mettl3 overexpression specifically in ß-cells, delayed diabetes progression in the non-obese diabetic (NOD) mouse model of T1D by limiting the upregulation of Oas pointing to potential therapeutic relevance. Mechanistically, the accumulation of reactive oxygen species blocked METTL3 upregulation in response to cytokines, while physiological levels of nitric oxide promoted its expression in human islets. Furthermore, for the first time to our knowledge, we show that the cysteines in position C276 and C326 in the zinc finger domain of the METTL3 protein are sensitive to S-nitrosylation (SNO) and are significant for the METTL3 mediated regulation of OAS mRNA stability in human ß-cells in response to cytokines. Collectively, we report that m 6 A regulates human and mouse ß-cells to control the innate immune response during the onset of T1D and propose targeting METTL3 to prevent ß-cell death in T1D.

12.
Cell Rep ; 41(1): 111436, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36198264

RESUMEN

Prevention or amelioration of declining ß cell mass is a potential strategy to cure diabetes. Here, we report the pathways utilized by ß cells to robustly replicate in response to acute insulin resistance induced by S961, a pharmacological insulin receptor antagonist. Interestingly, pathways that include CENP-A and the transcription factor E2F1 that are independent of insulin signaling and its substrates appeared to mediate S961-induced ß cell multiplication. Consistently, pharmacological inhibition of E2F1 blocks ß-cell proliferation in S961-injected mice. Serum from S961-treated mice recapitulates replication of ß cells in mouse and human islets in an E2F1-dependent manner. Co-culture of islets with adipocytes isolated from S961-treated mice enables ß cells to duplicate, while E2F1 inhibition limits their growth even in the presence of adipocytes. These data suggest insulin resistance-induced proliferative signals from adipocytes activate E2F1, a potential therapeutic target, to promote ß cell compensation.


Asunto(s)
Resistencia a la Insulina , Células Secretoras de Insulina , Animales , Proliferación Celular , Proteína A Centromérica/metabolismo , Factor de Transcripción E2F1/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Noqueados , Receptor de Insulina/metabolismo
13.
Nat Commun ; 13(1): 7323, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443308

RESUMEN

Secreted isoform of endoplasmic reticulum membrane complex subunit 10 (scEMC10) is a poorly characterized secreted protein of largely unknown physiological function. Here we demonstrate that scEMC10 is upregulated in people with obesity and is positively associated with insulin resistance. Consistent with a causal role for scEMC10 in obesity, Emc10-/- mice are resistant to diet-induced obesity due to an increase in energy expenditure, while scEMC10 overexpression decreases energy expenditure, thus promoting obesity in mouse. Furthermore, neutralization of circulating scEMC10 using a monoclonal antibody reduces body weight and enhances insulin sensitivity in obese mice. Mechanistically, we provide evidence that scEMC10 can be transported into cells where it binds to the catalytic subunit of PKA and inhibits its stimulatory action on CREB while ablation of EMC10 promotes thermogenesis in adipocytes via activation of the PKA signalling pathway and its downstream targets. Taken together, our data identify scEMC10 as a circulating inhibitor of thermogenesis and a potential therapeutic target for obesity and its cardiometabolic complications.


Asunto(s)
Anticuerpos Neutralizantes , Resistencia a la Insulina , Humanos , Ratones , Animales , Dieta , Obesidad/genética , Obesidad/prevención & control , Transporte Biológico , Ratones Obesos , Proteínas de la Membrana
14.
Sci Transl Med ; 14(637): eabh3831, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35320000

RESUMEN

Inflammation has profound but poorly understood effects on metabolism, especially in the context of obesity and nonalcoholic fatty liver disease (NAFLD). Here, we report that hepatic interferon regulatory factor 3 (IRF3) is a direct transcriptional regulator of glucose homeostasis through induction of Ppp2r1b, a component of serine/threonine phosphatase PP2A, and subsequent suppression of glucose production. Global ablation of IRF3 in mice on a high-fat diet protected against both steatosis and dysglycemia, whereas hepatocyte-specific loss of IRF3 affects only dysglycemia. Integration of the IRF3-dependent transcriptome and cistrome in mouse hepatocytes identifies Ppp2r1b as a direct IRF3 target responsible for mediating its metabolic actions on glucose homeostasis. IRF3-mediated induction of Ppp2r1b amplified PP2A activity, with subsequent dephosphorylation of AMPKα and AKT. Furthermore, suppression of hepatic Irf3 expression with antisense oligonucleotides reversed obesity-induced insulin resistance and restored glucose homeostasis in obese mice. Obese humans with NAFLD displayed enhanced activation of liver IRF3, with reversion after bariatric surgery. Hepatic PPP2R1B expression correlated with HgbA1C and was elevated in obese humans with impaired fasting glucose. We therefore identify the hepatic IRF3-PPP2R1B axis as a causal link between obesity-induced inflammation and dysglycemia and suggest an approach for limiting the metabolic dysfunction accompanying obesity-associated NAFLD.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Resistencia a la Insulina/fisiología , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/complicaciones , Obesidad/metabolismo
15.
J Clin Invest ; 130(5): 2391-2407, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32250344

RESUMEN

The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. Although gene-environment interactions have been implicated in the etiology of several disorders, the impact of paternal and/or maternal metabolic syndrome on the clinical phenotypes of offspring and the underlying genetic and epigenetic contributors of NAFLD have not been fully explored. To this end, we used the liver-specific insulin receptor knockout (LIRKO) mouse, a unique nondietary model manifesting 3 hallmarks that confer high risk for the development of NAFLD: hyperglycemia, insulin resistance, and dyslipidemia. We report that parental metabolic syndrome epigenetically reprograms members of the TGF-ß family, including neuronal regeneration-related protein (NREP) and growth differentiation factor 15 (GDF15). NREP and GDF15 modulate the expression of several genes involved in the regulation of hepatic lipid metabolism. In particular, NREP downregulation increases the protein abundance of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and ATP-citrate lyase (ACLY) in a TGF-ß receptor/PI3K/protein kinase B-dependent manner, to regulate hepatic acetyl-CoA and cholesterol synthesis. Reduced hepatic expression of NREP in patients with NAFLD and substantial correlations between low serum NREP levels and the presence of steatosis and nonalcoholic steatohepatitis highlight the clinical translational relevance of our findings in the context of recent preclinical trials implicating ACLY in NAFLD progression.


Asunto(s)
Epigénesis Genética , Regulación Enzimológica de la Expresión Génica , Metabolismo de los Lípidos , Síndrome Metabólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Femenino , Síndrome Metabólico/genética , Síndrome Metabólico/patología , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/patología
16.
Mol Metab ; 27S: S42-S48, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31500830

RESUMEN

BACKGROUND: Pancreatic ß-cells adapt to high metabolic demand by expanding their ß-cell mass and/or enhancing insulin secretion to maintain glucose homeostasis. Type 2 diabetes (T2D) is typically characterized by ß-cell decompensation. SCOPE OF THE REVIEW: The current review focuses on summarizing the "omics" and "epi-omics" approaches that particularly focus on addressing the ß-cell adaptation to insulin resistance and T2D. MAJOR CONCLUSIONS: The molecular mechanisms underlying successful versus compromised ß-cell adaptation to insulin resistance are not entirely understood. The last decade has seen an exponential increase in the use of "omics" and "epi-omics" approaches to dissect pathophysiology of metabolic diseases. One recent example is the emergence of m6A mRNA methylation as a new layer of regulation of gene expression with the potential to impact diverse physiological processes in metabolic cells.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Adaptación Fisiológica , Animales , Humanos , Resistencia a la Insulina
17.
Genome Biol ; 20(1): 294, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31870409

RESUMEN

Epitranscriptome profiling using MeRIP-seq is a powerful technique for in vivo functional studies of reversible RNA modifications. We develop RADAR, a comprehensive analytical tool for detecting differentially methylated loci in MeRIP-seq data. RADAR enables accurate identification of altered methylation sites by accommodating variability of pre-immunoprecipitation expression level and post-immunoprecipitation count using different strategies. In addition, it is compatible with complex study design when covariates need to be incorporated in the analysis. Through simulation and real dataset analyses, we show that RADAR leads to more accurate and reproducible differential methylation analysis results than alternatives, which is available at https://github.com/scottzijiezhang/RADAR.


Asunto(s)
Modelos Estadísticos , Análisis de Secuencia de ARN , Programas Informáticos , Animales , Humanos , Inmunoprecipitación , Metilación , Ratones Noqueados
18.
Nat Metab ; 1(8): 765-774, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31867565

RESUMEN

The regulation of islet cell biology is critical for glucose homeostasis1.N6 -methyladenosine (m6A) is the most abundant internal messenger RNA (mRNA) modification in mammals2. Here we report that the m6A landscape segregates human type 2 diabetes (T2D) islets from controls significantly better than the transcriptome and that m6A is vital for ß-cell biology. m6A-sequencing in human T2D islets reveals several hypomethylated transcripts involved in cell-cycle progression, insulin secretion, and the Insulin/IGF1-AKT-PDX1 pathway. Depletion of m6A levels in EndoC-ßH1 induces cell-cycle arrest and impairs insulin secretion by decreasing AKT phosphorylation and PDX1 protein levels. ß-cell specific Mettl14 knock-out mice, which display reduced m6A levels, mimic the islet phenotype in human T2D with early diabetes onset and mortality due to decreased ß-cell proliferation and insulin degranulation. Our data underscore the significance of RNA methylation in regulating human ß-cell biology, and provide a rationale for potential therapeutic targeting of m6A modulators to preserve ß-cell survival and function in diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Células Secretoras de Insulina/fisiología , ARN Mensajero/metabolismo , Animales , Humanos , Secreción de Insulina , Metilación
19.
Diabetes ; 68(5): 1084-1093, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30833467

RESUMEN

Solute Carrier Family 19 Member 2 (SLC19A2) encodes thiamine transporter 1 (THTR1), which facilitates thiamine transport across the cell membrane. SLC19A2 homozygous mutations have been described as a cause of thiamine-responsive megaloblastic anemia (TRMA), an autosomal recessive syndrome characterized by megaloblastic anemia, diabetes, and sensorineural deafness. Here we describe a loss-of-function SLC19A2 mutation (c.A1063C: p.Lys355Gln) in a family with early-onset diabetes and mild TRMA traits transmitted in an autosomal dominant fashion. We show that SLC19A2-deficient ß-cells are characterized by impaired thiamine uptake, which is not rescued by overexpression of the p.Lys355Gln mutant protein. We further demonstrate that SLC19A2 deficit causes impaired insulin secretion in conjunction with mitochondrial dysfunction, loss of protection against oxidative stress, and cell cycle arrest. These findings link SLC19A2 mutations to autosomal dominant diabetes and suggest a role of SLC19A2 in ß-cell function and survival.


Asunto(s)
Anemia Megaloblástica/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Anemia Megaloblástica/genética , Puntos de Control del Ciclo Celular/genética , Puntos de Control del Ciclo Celular/fisiología , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Humanos , Insulina/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mutación/genética , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Tiamina/metabolismo
20.
JCI Insight ; 4(8)2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30996131

RESUMEN

The identification of new sources of ß cells is an important endeavor with therapeutic implications for diabetes. Insulin resistance, in physiological states such as pregnancy or in pathological states such as type 2 diabetes (T2D), is characterized by a compensatory increase in ß cell mass. To explore the existence of a dynamic ß cell reserve, we superimposed pregnancy on the liver-specific insulin receptor-KO (LIRKO) model of insulin resistance that already exhibits ß cell hyperplasia and used lineage tracing to track the source of new ß cells. Although both control and LIRKO mice displayed increased ß cell mass in response to the relative insulin resistance of pregnancy, the further increase in mass in the latter supported a dynamic source that could be traced to pancreatic ducts. Two observations support the translational significance of these findings. First, NOD/SCID-γ LIRKO mice that became pregnant following cotransplantation of human islets and human ducts under the kidney capsule showed enhanced ß cell proliferation and an increase in ductal cells positive for transcription factors expressed during ß cell development. Second, we identified duct cells positive for immature ß cell markers in pancreas sections from pregnant humans and in individuals with T2D. Taken together, during increased insulin demand, ductal cells contribute to the compensatory ß cell pool by differentiation/neogenesis.


Asunto(s)
Diferenciación Celular/fisiología , Diabetes Mellitus Tipo 2/terapia , Células Secretoras de Insulina/fisiología , Conductos Pancreáticos/citología , Embarazo/fisiología , Adulto , Animales , Proliferación Celular , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Trasplante de Islotes Pancreáticos , Ratones , Ratones Noqueados , Persona de Mediana Edad , Conductos Pancreáticos/trasplante , Receptor de Insulina/genética , Quimera por Trasplante , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA