Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 155(2): 410-22, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24120139

RESUMEN

The ability of p53 to regulate transcription is crucial for tumor suppression and implies that inherited polymorphisms in functional p53-binding sites could influence cancer. Here, we identify a polymorphic p53 responsive element and demonstrate its influence on cancer risk using genome-wide data sets of cancer susceptibility loci, genetic variation, p53 occupancy, and p53-binding sites. We uncover a single-nucleotide polymorphism (SNP) in a functional p53-binding site and establish its influence on the ability of p53 to bind to and regulate transcription of the KITLG gene. The SNP resides in KITLG and associates with one of the largest risks identified among cancer genome-wide association studies. We establish that the SNP has undergone positive selection throughout evolution, signifying a selective benefit, but go on to show that similar SNPs are rare in the genome due to negative selection, indicating that polymorphisms in p53-binding sites are primarily detrimental to humans.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Elementos de Respuesta , Factor de Células Madre/genética , Neoplasias Testiculares/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proliferación Celular , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones , Selección Genética , Transcripción Genética
3.
Dev Dyn ; 253(1): 28-58, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36795082

RESUMEN

Transcription factors (TFs) play a crucial role in regulating the dynamic and precise patterns of gene expression required for the initial specification of endothelial cells (ECs), and during endothelial growth and differentiation. While sharing many core features, ECs can be highly heterogeneous. Differential gene expression between ECs is essential to pattern the hierarchical vascular network into arteries, veins and capillaries, to drive angiogenic growth of new vessels, and to direct specialization in response to local signals. Unlike many other cell types, ECs have no single master regulator, instead relying on differing combinations of a necessarily limited repertoire of TFs to achieve tight spatial and temporal activation and repression of gene expression. Here, we will discuss the cohort of TFs known to be involved in directing gene expression during different stages of mammalian vasculogenesis and angiogenesis, with a primary focus on development.


Asunto(s)
Células Endoteliales , Factores de Transcripción , Animales , Humanos , Factores de Transcripción/metabolismo , Células Endoteliales/metabolismo , Angiogénesis , Neovascularización Fisiológica/genética , Arterias , Mamíferos/metabolismo
4.
Genes Dev ; 30(20): 2297-2309, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27898394

RESUMEN

Angiogenesis, the fundamental process by which new blood vessels form from existing ones, depends on precise spatial and temporal gene expression within specific compartments of the endothelium. However, the molecular links between proangiogenic signals and downstream gene expression remain unclear. During sprouting angiogenesis, the specification of endothelial cells into the tip cells that lead new blood vessel sprouts is coordinated by vascular endothelial growth factor A (VEGFA) and Delta-like ligand 4 (Dll4)/Notch signaling and requires high levels of Notch ligand DLL4. Here, we identify MEF2 transcription factors as crucial regulators of sprouting angiogenesis directly downstream from VEGFA. Through the characterization of a Dll4 enhancer directing expression to endothelial cells at the angiogenic front, we found that MEF2 factors directly transcriptionally activate the expression of Dll4 and many other key genes up-regulated during sprouting angiogenesis in both physiological and tumor vascularization. Unlike ETS-mediated regulation, MEF2-binding motifs are not ubiquitous to all endothelial gene enhancers and promoters but are instead overrepresented around genes associated with sprouting angiogenesis. MEF2 target gene activation is directly linked to VEGFA-induced release of repressive histone deacetylases and concurrent recruitment of the histone acetyltransferase EP300 to MEF2 target gene regulatory elements, thus establishing MEF2 factors as the transcriptional effectors of VEGFA signaling during angiogenesis.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/fisiología , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción MEF2/metabolismo , Neovascularización Fisiológica/genética , Animales , Células Cultivadas , Embrión no Mamífero , Células Endoteliales/enzimología , Elementos de Facilitación Genéticos/genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Transcripción MEF2/química , Factores de Transcripción MEF2/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Neovascularización Patológica/genética , Dominios y Motivos de Interacción de Proteínas , Retina/embriología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
5.
Cell ; 135(6): 1053-64, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-19070576

RESUMEN

Vascular development begins when mesodermal cells differentiate into endothelial cells, which then form primitive vessels. It has been hypothesized that endothelial-specific gene expression may be regulated combinatorially, but the transcriptional mechanisms governing specificity in vascular gene expression remain incompletely understood. Here, we identify a 44 bp transcriptional enhancer that is sufficient to direct expression specifically and exclusively to the developing vascular endothelium. This enhancer is regulated by a composite cis-acting element, the FOX:ETS motif, which is bound and synergistically activated by Forkhead and Ets transcription factors. We demonstrate that coexpression of the Forkhead protein FoxC2 and the Ets protein Etv2 induces ectopic expression of vascular genes in Xenopus embryos, and that combinatorial knockdown of the orthologous genes in zebrafish embryos disrupts vascular development. Finally, we show that FOX:ETS motifs are present in many known endothelial-specific enhancers and that this motif is an efficient predictor of endothelial enhancers in the human genome.


Asunto(s)
Elementos de Facilitación Genéticos , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Proto-Oncogénicas c-ets/metabolismo , Animales , Vasos Sanguíneos/embriología , Embrión de Mamíferos/citología , Embrión no Mamífero/metabolismo , Endotelio/embriología , Fibroblastos/metabolismo , Humanos , Ratones , Xenopus , Pez Cebra
6.
Dev Biol ; 473: 1-14, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33453264

RESUMEN

Correct vascular differentiation requires distinct patterns of gene expression in different subtypes of endothelial cells. Members of the ETS transcription factor family are essential for the transcriptional activation of arterial and angiogenesis-specific gene regulatory elements, leading to the hypothesis that they play lineage-defining roles in arterial and angiogenic differentiation directly downstream of VEGFA signalling. However, an alternative explanation is that ETS binding at enhancers and promoters is a general requirement for activation of many endothelial genes regardless of expression pattern, with subtype-specificity provided by additional factors. Here we use analysis of Ephb4 and Coup-TFII (Nr2f2) vein-specific enhancers to demonstrate that ETS factors are equally essential for vein, arterial and angiogenic-specific enhancer activity patterns. Further, we show that ETS factor binding at these vein-specific enhancers is enriched by VEGFA signalling, similar to that seen at arterial and angiogenic enhancers. However, while arterial and angiogenic enhancers can be activated by VEGFA in vivo, the Ephb4 and Coup-TFII venous enhancers are not, suggesting that the specificity of VEGFA-induced arterial and angiogenic enhancer activity occurs via non-ETS transcription factors. These results support a model in which ETS factors are not the primary regulators of specific patterns of gene expression in different endothelial subtypes.


Asunto(s)
Células Endoteliales/metabolismo , Neovascularización Fisiológica/fisiología , Proteínas Proto-Oncogénicas c-ets/metabolismo , Animales , Arterias/metabolismo , Diferenciación Celular/fisiología , Células Endoteliales/fisiología , Endotelio/metabolismo , Elementos de Facilitación Genéticos/genética , Femenino , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-ets/fisiología , Transducción de Señal , Factores de Transcripción/metabolismo , Activación Transcripcional , Factor A de Crecimiento Endotelial Vascular/metabolismo , Venas/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
7.
Development ; 144(14): 2629-2639, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619820

RESUMEN

Arterial specification and differentiation are influenced by a number of regulatory pathways. While it is known that the Vegfa-Notch cascade plays a central role, the transcriptional hierarchy controlling arterial specification has not been fully delineated. To elucidate the direct transcriptional regulators of Notch receptor expression in arterial endothelial cells, we used histone signatures, DNaseI hypersensitivity and ChIP-seq data to identify enhancers for the human NOTCH1 and zebrafish notch1b genes. These enhancers were able to direct arterial endothelial cell-restricted expression in transgenic models. Genetic disruption of SoxF binding sites established a clear requirement for members of this group of transcription factors (SOX7, SOX17 and SOX18) to drive the activity of these enhancers in vivo Endogenous deletion of the notch1b enhancer led to a significant loss of arterial connections to the dorsal aorta in Notch pathway-deficient zebrafish. Loss of SoxF function revealed that these factors are necessary for NOTCH1 and notch1b enhancer activity and for correct endogenous transcription of these genes. These findings position SoxF transcription factors directly upstream of Notch receptor expression during the acquisition of arterial identity in vertebrates.


Asunto(s)
Arterias/embriología , Arterias/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Malformaciones Arteriovenosas/embriología , Malformaciones Arteriovenosas/genética , Malformaciones Arteriovenosas/metabolismo , Elementos de Facilitación Genéticos , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Embarazo , Receptor Notch1/deficiencia , Factores de Transcripción SOXF/deficiencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
Arterioscler Thromb Vasc Biol ; 38(11): 2550-2561, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30354251

RESUMEN

The field of vascular biology has gained enormous insight from the use of Cre and inducible Cre mouse models to temporally and spatially manipulate gene expression within the endothelium. Models are available to constitutively or inducibly modulate gene expression in all or a specified subset of endothelial cells. However, caution should be applied to both the selection of allele and the analysis of resultant phenotype: many similarly named Cre models have divergent activity patterns while ectopic or inconsistent Cre or inducible Cre expression can dramatically affect results. In an effort to disambiguate previous data and to provide a resource to aid appropriate experimental design, here we summarize what is known about Cre recombinase activity in the most widely used endothelial-specific Cre and Cre/ERT2 mouse models.


Asunto(s)
Células Endoteliales/metabolismo , Marcación de Gen/métodos , Integrasas/genética , Receptores de Estrógenos/genética , Animales , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Regulación de la Expresión Génica/efectos de los fármacos , Genotipo , Integrasas/metabolismo , Ratones Transgénicos , Fenotipo , Dominios y Motivos de Interacción de Proteínas/genética , Receptores de Estrógenos/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Tamoxifeno/farmacología
9.
Arterioscler Thromb Vasc Biol ; 36(6): 1209-19, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27079877

RESUMEN

OBJECTIVE: The vascular endothelial growth factor (VEGF) receptor Flk1 is essential for vascular development, but the signaling and transcriptional pathways by which its expression is regulated in endothelial cells remain unclear. Although previous studies have identified 2 Flk1 regulatory enhancers, these are dispensable for Flk1 expression, indicating that additional enhancers contribute to Flk1 regulation in endothelial cells. In the present study, we sought to identify Flk1 enhancers contributing to expression in endothelial cells. APPROACH AND RESULTS: A region of the 10th intron of the Flk1 gene (Flk1in10) was identified as a putative enhancer and tested in mouse and zebrafish transgenic models. This region robustly directed reporter gene expression in arterial endothelial cells. Using a combination of targeted mutagenesis of transcription factor-binding sites and gene silencing of transcription factors, we found that Gata and Ets factors are required for Flk1in10 enhancer activity in all endothelial cells. Furthermore, we showed that activity of the Flk1in10 enhancer is restricted to arteries through repression of gene expression in venous endothelial cells by the Notch pathway transcriptional regulator Rbpj. CONCLUSIONS: This study demonstrates a novel mechanism of arterial-venous identity acquisition, indicates a direct link between the Notch and VEGF signaling pathways, and illustrates how cis-regulatory diversity permits differential expression outcomes from a limited repertoire of transcriptional regulators.


Asunto(s)
Arterias/metabolismo , Células Endoteliales/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Neovascularización Fisiológica , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Venas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Arterias/embriología , Sitios de Unión , Elementos de Facilitación Genéticos , Factores de Transcripción GATA/metabolismo , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Genes Reporteros , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Intrones , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Mutación , Proteínas Proto-Oncogénicas c-ets/metabolismo , Receptores Notch/metabolismo , Factores de Transcripción SOX/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Venas/embriología , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
10.
Proc Natl Acad Sci U S A ; 110(29): 11893-8, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23818617

RESUMEN

The mechanisms by which arterial fate is established and maintained are not clearly understood. Although a number of signaling pathways and transcriptional regulators have been implicated in arterio-venous differentiation, none are essential for arterial formation, and the manner in which widely expressed factors may achieve arterial-specific gene regulation is unclear. Using both mouse and zebrafish models, we demonstrate here that arterial specification is regulated combinatorially by Notch signaling and SoxF transcription factors, via direct transcriptional gene activation. Through the identification and characterization of two arterial endothelial cell-specific gene enhancers for the Notch ligand Delta-like ligand 4 (Dll4), we show that arterial Dll4 expression requires the direct binding of both the RBPJ/Notch intracellular domain and SOXF transcription factors. Specific combinatorial, but not individual, loss of SOXF and RBPJ DNA binding ablates all Dll4 enhancer-transgene expression despite the presence of multiple functional ETS binding sites, as does knockdown of sox7;sox18 in combination with loss of Notch signaling. Furthermore, triple knockdown of sox7, sox18 and rbpj also results in ablation of endogenous dll4 expression. Fascinatingly, this combinatorial ablation leads to a loss of arterial markers and the absence of a detectable dorsal aorta, demonstrating the essential roles of SoxF and Notch, together, in the acquisition of arterial identity.


Asunto(s)
Arterias/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Notch/metabolismo , Factores de Transcripción SOXF/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Arterias/metabolismo , Proteínas de Unión al Calcio , Inmunoprecipitación de Cromatina , Clonación Molecular , Ensayo de Cambio de Movilidad Electroforética , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Transgénicos , Pez Cebra
11.
Dev Biol ; 395(2): 379-389, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25179465

RESUMEN

Endothelin-converting enzyme-1 (Ece-1), a crucial component of the Endothelin signaling pathway, is required for embryonic development and is an important regulator of vascular tone, yet the transcriptional regulation of the ECE1 gene has remained largely unknown. Here, we define the activity and regulation of an enhancer from the human ECE1 locus in vivo. The enhancer identified here becomes active in endothelial progenitor cells shortly after their initial specification and is dependent on a conserved FOX:ETS motif, a composite binding site for Forkhead transcription factors and the Ets transcription factor Etv2, for activity in vivo. The ECE1 FOX:ETS motif is bound and cooperatively activated by FoxC2 and Etv2, but unlike other described FOX:ETS-dependent enhancers, ECE1 enhancer activity becomes restricted to arterial endothelium and endocardium by embryonic day 9.5 in transgenic mouse embryos. The ECE1 endothelial enhancer also contains an evolutionarily-conserved, consensus SOX binding site, which is required for activity in transgenic mouse embryos. Importantly, the ECE1 SOX site is bound and activated by Sox17, a transcription factor involved in endothelial cell differentiation and an important regulator of arterial identity. Moreover, the ECE1 enhancer is cooperatively activated by the combinatorial action of FoxC2, Etv2, and Sox17. Although Sox17 is required for arterial identity, few direct transcriptional targets have been identified in endothelial cells. Thus, this work has important implications for our understanding of endothelial specification and arterial subspecification.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Endocardio/embriología , Endotelio Vascular/embriología , Factores de Transcripción Forkhead/metabolismo , Metaloendopeptidasas/metabolismo , Factores de Transcripción SOXF/metabolismo , Factores de Transcripción/metabolismo , Animales , Ácido Aspártico Endopeptidasas/genética , Clonación Molecular , Cartilla de ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Endocardio/metabolismo , Enzimas Convertidoras de Endotelina , Endotelio Vascular/metabolismo , Elementos de Facilitación Genéticos/genética , Técnica del Anticuerpo Fluorescente , Galactósidos , Humanos , Indoles , Metaloendopeptidasas/genética , Ratones , Ratones Transgénicos , Mutagénesis , Factores de Transcripción SOX/metabolismo
13.
J Am Soc Nephrol ; 25(12): 2764-77, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24854274

RESUMEN

Podocin is a key protein of the kidney podocyte slit diaphragm protein complex, an important part of the glomerular filtration barrier. Mutations in the human podocin gene NPHS2 cause familial or sporadic forms of renal disease owing to the disruption of filtration barrier integrity. The exclusive expression of NPHS2 in podocytes reflects its unique function and raises interesting questions about its transcriptional regulation. Here, we further define a 2.5-kb zebrafish nphs2 promoter fragment previously described and identify a 49-bp podocyte-specific transcriptional enhancer using Tol2-mediated G0 transgenesis in zebrafish. Within this enhancer, we identified a cis-acting element composed of two adjacent DNA-binding sites (FLAT-E and forkhead) bound by transcription factors Lmx1b and FoxC. In zebrafish, double knockdown of Lmx1b and FoxC orthologs using morpholino doses that caused no or minimal phenotypic changes upon individual knockdown completely disrupted podocyte development in 40% of injected embryos. Co-overexpression of the two genes potently induced endogenous nphs2 expression in zebrafish podocytes. We found that the NPHS2 promoter also contains a cis-acting Lmx1b-FoxC motif that binds LMX1B and FoxC2. Furthermore, a genome-wide search identified several genes that carry the Lmx1b-FoxC motif in their promoter regions. Among these candidates, motif-driven podocyte enhancer activity of CCNC and MEIS2 was functionally analyzed in vivo. Our results show that podocyte expression of some genes is combinatorially regulated by two transcription factors interacting synergistically with a common enhancer. This finding provides insights into transcriptional mechanisms required for normal and pathologic podocyte functions.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Podocitos/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Secuencias de Aminoácidos , Animales , Animales Modificados Genéticamente , Sitios de Unión , Elementos de Facilitación Genéticos , Células HEK293 , Humanos , Proteínas con Homeodominio LIM/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Mutagénesis , Fenotipo , Podocitos/citología , Regiones Promotoras Genéticas , Transcripción Genética , Pez Cebra
14.
Curr Opin Physiol ; 35: None, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38328689

RESUMEN

The complex and hierarchical vascular network of arteries, veins, and capillaries features considerable endothelial heterogeneity, yet the regulatory pathways directing arteriovenous specification, differentiation, and identity are still not fully understood. Recent advances in analysis of endothelial-specific gene-regulatory elements, single-cell RNA sequencing, and cell lineage tracing have both emphasized the importance of transcriptional regulation in this process and shed considerable light on the mechanism and regulation of specification within the endothelium. In this review, we discuss recent advances in our understanding of how endothelial cells acquire arterial and venous identity and the role different transcription factors play in this process.

15.
J Am Heart Assoc ; 12(4): e024303, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36789992

RESUMEN

Background Proper function of endothelial cells is critical for vascular integrity and organismal survival. Studies over the past 2 decades have identified 2 members of the KLF (Krüppel-like factor) family of proteins, KLF2 and KLF4, as nodal regulators of endothelial function. Strikingly, inducible postnatal deletion of both KLF2 and KLF4 resulted in widespread vascular leak, coagulopathy, and rapid death. Importantly, while transcriptomic studies revealed profound alterations in gene expression, the molecular mechanisms underlying these changes remain poorly understood. Here, we seek to determine mechanisms of KLF2 and KLF4 transcriptional control in multiple vascular beds to further understand their roles as critical endothelial regulators. Methods and Results We integrate chromatin occupancy and transcription studies from multiple transgenic mouse models to demonstrate that KLF2 and KLF4 have overlapping yet distinct binding patterns and transcriptional targets in heart and lung endothelium. Mechanistically, KLFs use open chromatin regions in promoters and enhancers and bind in context-specific patterns that govern transcription in microvasculature. Importantly, this occurs during homeostasis in vivo without additional exogenous stimuli. Conclusions Together, this work provides mechanistic insight behind the well-described transcriptional and functional heterogeneity seen in vascular populations, while also establishing tools into exploring microvascular endothelial dynamics in vivo.


Asunto(s)
Endotelio , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Animales , Ratones , Cromatina/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Expresión Génica , Factor 4 Similar a Kruppel/genética , Factor 4 Similar a Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo
16.
Arterioscler Thromb Vasc Biol ; 31(7): 1469-75, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21677289

RESUMEN

The formation of the vasculature depends on the precise spatial and temporal control of gene expression to define endothelial cell identity and to ensure the correct distribution and structure of the forming vessel network. This review provides an overview of the establishment of the vascular system, accompanied by a detailed discussion of the transcription factors involved in regulating endothelial gene expression during vasculogenesis and early vessel formation in both fish and mammalian systems. We also review the transcriptional pathways lying both upstream and downstream of key vascular transcription factors.


Asunto(s)
Células Endoteliales/metabolismo , Neovascularización Fisiológica , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Humanos , Neovascularización Fisiológica/genética , Fenotipo , Transducción de Señal/genética
17.
Nature ; 444(7118): 499-502, 2006 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-17086198

RESUMEN

Identifying the sequences that direct the spatial and temporal expression of genes and defining their function in vivo remains a significant challenge in the annotation of vertebrate genomes. One major obstacle is the lack of experimentally validated training sets. In this study, we made use of extreme evolutionary sequence conservation as a filter to identify putative gene regulatory elements, and characterized the in vivo enhancer activity of a large group of non-coding elements in the human genome that are conserved in human-pufferfish, Takifugu (Fugu) rubripes, or ultraconserved in human-mouse-rat. We tested 167 of these extremely conserved sequences in a transgenic mouse enhancer assay. Here we report that 45% of these sequences functioned reproducibly as tissue-specific enhancers of gene expression at embryonic day 11.5. While directing expression in a broad range of anatomical structures in the embryo, the majority of the 75 enhancers directed expression to various regions of the developing nervous system. We identified sequence signatures enriched in a subset of these elements that targeted forebrain expression, and used these features to rank all approximately 3,100 non-coding elements in the human genome that are conserved between human and Fugu. The testing of the top predictions in transgenic mice resulted in a threefold enrichment for sequences with forebrain enhancer activity. These data dramatically expand the catalogue of human gene enhancers that have been characterized in vivo, and illustrate the utility of such training sets for a variety of biological applications, including decoding the regulatory vocabulary of the human genome.


Asunto(s)
Elementos de Facilitación Genéticos , Genoma Humano , Animales , Secuencia de Bases , Cromosomas Humanos Par 16 , Secuencia Conservada , Embrión de Mamíferos/metabolismo , Embrión no Mamífero , Expresión Génica , Genómica/métodos , Humanos , Ratones , Ratones Transgénicos , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Takifugu/genética , Factores de Transcripción/genética
18.
Methods Mol Biol ; 2441: 351-368, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35099751

RESUMEN

Identification and analysis of enhancers for endothelial-expressed genes can provide crucial information regarding their upstream transcriptional regulators. However, enhancer identification can be challenging, particularly for people with limited access or experience of bioinformatics, and transgenic analysis of enhancer activity patterns can be prohibitively expensive. Here we describe how to use publicly available datasets displayed on the UCSC Genome Browser to identify putative endothelial enhancers for mammalian genes. Furthermore, we detail how to utilize mosaic Tol2-mediated transgenesis in zebrafish to verify whether a putative enhancer is capable of directing endothelial-specific patterns of gene expression.


Asunto(s)
Elementos de Facilitación Genéticos , Pez Cebra , Animales , Animales Modificados Genéticamente , Endotelio , Técnicas de Transferencia de Gen , Humanos , Mamíferos/genética , Pez Cebra/genética , Pez Cebra/metabolismo
19.
Sci Adv ; 8(35): eabo7958, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36044575

RESUMEN

Endothelial cell (EC) sensing of disturbed blood flow triggers atherosclerosis, a disease of arteries that causes heart attack and stroke, through poorly defined mechanisms. The Notch pathway plays a central role in blood vessel growth and homeostasis, but its potential role in sensing of disturbed flow has not been previously studied. Here, we show using porcine and murine arteries and cultured human coronary artery EC that disturbed flow activates the JAG1-NOTCH4 signaling pathway. Light-sheet imaging revealed enrichment of JAG1 and NOTCH4 in EC of atherosclerotic plaques, and EC-specific genetic deletion of Jag1 (Jag1ECKO) demonstrated that Jag1 promotes atherosclerosis at sites of disturbed flow. Mechanistically, single-cell RNA sequencing in Jag1ECKO mice demonstrated that Jag1 suppresses subsets of ECs that proliferate and migrate. We conclude that JAG1-NOTCH4 sensing of disturbed flow enhances atherosclerosis susceptibility by regulating EC heterogeneity and that therapeutic targeting of this pathway may treat atherosclerosis.


Asunto(s)
Aterosclerosis , Proteína Jagged-1 , Placa Aterosclerótica , Receptor Notch4 , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Ratones , Placa Aterosclerótica/metabolismo , Receptor Notch4/genética , Receptor Notch4/metabolismo , Transducción de Señal , Porcinos
20.
Front Genet ; 12: 806136, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126469

RESUMEN

The placental vasculature provides the developing embryo with a circulation to deliver nutrients and dispose of waste products. However, in the mouse, the vascular components of the chorio-allantoic placenta have been largely unexplored due to a lack of well-validated molecular markers. This is required to study how these blood vessels form in development and how they are impacted by embryonic or maternal defects. Here, we employed marker analysis to characterize the arterial/arteriole and venous/venule endothelial cells (ECs) during normal mouse placental development. We reveal that placental ECs are potentially unique compared with their embryonic counterparts. We assessed embryonic markers of arterial ECs, venous ECs, and their capillary counterparts-arteriole and venule ECs. Major findings were that the arterial tree exclusively expressed Dll4, and venous vascular tree could be distinguished from the arterial tree by Endomucin (EMCN) expression levels. The relationship between the placenta and developing heart is particularly interesting. These two organs form at the same stages of embryogenesis and are well known to affect each other's growth trajectories. However, although there are many mouse models of heart defects, these are not routinely assessed for placental defects. Using these new placental vascular markers, we reveal that mouse embryos from one model of heart defects, caused by maternal iron deficiency, also have defects in the formation of the placental arterial, but not the venous, vascular tree. Defects to the embryonic cardiovascular system can therefore have a significant impact on blood flow delivery and expansion of the placental arterial tree.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA