Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cancer ; 126(12): 2821-2828, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32154928

RESUMEN

BACKGROUND: Targeting vascular endothelial growth factor (VEGF) alone does not improve overall survival (OS) in recurrent glioblastoma (rGBM). The angiopoiein (Ang)-TIE2 system may play a role in tumor survival under VEGF inhibition. We conducted a phase 2, double-blinded, placebo-controlled trial of bevacizumab plus trebananib (a novel Fc fusion protein that sequesters Ang1/Ang2) over bevacizumab alone in rGBM. METHODS: Patients ≥18 years of age with a Karnofsky performance status ≥70 and GBM or variants in first or second relapse were randomized to bevacizumab 10 mg/kg every 2 weeks plus trebananib 15 mg/kg every week or bevacizumab plus placebo. The primary endpoint was 6-month progression-free survival (PFS). RESULTS: After an initial 6-patient lead-in cohort confirmed the safety of combining bevacizumab and trebananib, 115 eligible patients were randomized to the control (n = 58) or experimental treatment (n = 57). In the control arm, 6-month PFS was 41.1%, median survival time was 11.5 months (95% CI, 8.4-14.2 months), median PFS was 4.8 months (95% CI, 3.8-7.1 months), and radiographic response (RR) was 5.9%. In the experimental arm, 6-month PFS was 22.6%, median survival time was 7.5 months (95% CI, 6.8-10.1 months), median PFS was 4.2 months (95% CI, 3.7-5.6 months), and RR was 4.2%. The rate of severe toxicities was not significantly different between arms. CONCLUSION: The combination of bevacizumab and trebananib was well tolerated but did not significantly improve 6-month PFS rate, PFS, or OS for patients with rGBM over bevacizumab alone. The shorter PFS in the experimental arm with a hazard ratio of 1.51 (P = .04) suggests that the addition of trebananib to bevacizumab is detrimental.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Glioblastoma/tratamiento farmacológico , Gliosarcoma/tratamiento farmacológico , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Bevacizumab/administración & dosificación , Método Doble Ciego , Femenino , Glioblastoma/mortalidad , Glioblastoma/patología , Gliosarcoma/mortalidad , Gliosarcoma/patología , Humanos , Masculino , Persona de Mediana Edad , Placebos , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/farmacocinética , Resultado del Tratamiento
2.
Int J Cancer ; 143(11): 3019-3026, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29923182

RESUMEN

We sought to compare the tumor profiles of brain metastases from common cancers with those of primary tumors and extracranial metastases in order to identify potential targets and prioritize rational treatment strategies. Tumor samples were collected from both the primary and metastatic sites of nonsmall cell lung cancer, breast cancer and melanoma from patients in locations worldwide, and these were submitted to Caris Life Sciences for tumor multiplatform analysis, including gene sequencing (Sanger and next-generation sequencing with a targeted 47-gene panel), protein expression (assayed by immunohistochemistry) and gene amplification (assayed by in situ hybridization). The data analysis considered differential protein expression, gene amplification and mutations among brain metastases, extracranial metastases and primary tumors. The analyzed population included: 16,999 unmatched primary tumor and/or metastasis samples: 8,178 nonsmall cell lung cancers (5,098 primaries; 2,787 systemic metastases; 293 brain metastases), 7,064 breast cancers (3,496 primaries; 3,469 systemic metastases; 99 brain metastases) and 1,757 melanomas (660 primaries; 996 systemic metastases; 101 brain metastases). TOP2A expression was increased in brain metastases from all 3 cancers, and brain metastases overexpressed multiple proteins clustering around functions critical to DNA synthesis and repair and implicated in chemotherapy resistance, including RRM1, TS, ERCC1 and TOPO1. cMET was overexpressed in melanoma brain metastases relative to primary skin specimens. Brain metastasis patients may particularly benefit from therapeutic targeting of enzymes associated with DNA synthesis, replication and/or repair.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Anciano , Femenino , Expresión Génica/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética
3.
J Neurooncol ; 135(1): 75-81, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28702781

RESUMEN

Treatment response and survival after bevacizumab failure remains poor in patients with glioblastoma. Several recent publications examining glioblastoma patients treated with bevacizumab have described specific radiographic patterns of disease progression as correlating with outcome. This study aims to scrutinize these previously reported radiographic prognostic models in an independent data set to inspect their reproducibility and potential for clinical utility. Sixty four patients treated at MD Anderson matched predetermined inclusion criteria. Patients were categorized based on previously published data by: (1) Nowosielski et al. into: T2-diffuse, cT1 Flare-up, non-responders and T2 circumscribed groups (2) Modified Pope et al. criteria into: local, diffuse and distant groups and (3) Bahr et al. into groups with or without new diffusion-restricted and/or pre-contrast T1-hyperintense lesions. When classified according to Nowosielski et al. criteria, the cT1 Flare-up group had the longest overall survival (OS) from bevacizumab initiation, with non-responders having the worst outcomes. The T2 diffuse group had the longest progression free survival (PFS) from start of bevacizumab. When classified by modified Pope at al. criteria, most patients did not experience a shift in tumor pattern from the pattern at baseline, while the PFS and OS in patients with local-to-local and local-to-diffuse/distant patterns of progression were similar. Patients developing restricted diffusion on bevacizumab had worse OS. Diffuse patterns of progression in patients treated with bevacizumab are rare and not associated with worse outcomes compared to other radiographic subgroups. Emergence of restricted diffusion during bevacizumab treatment was a radiographic marker of worse OS.


Asunto(s)
Bevacizumab/uso terapéutico , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/diagnóstico por imagen , Glioblastoma/tratamiento farmacológico , Imagen por Resonancia Magnética , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Neoplasias Encefálicas/patología , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Femenino , Estudios de Seguimiento , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia , Pronóstico , Reproducibilidad de los Resultados , Estudios Retrospectivos , Análisis de Supervivencia , Resultado del Tratamiento
4.
J Neurooncol ; 119(1): 135-40, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24803001

RESUMEN

Bevacizumab (BEV) is widely used for treatment of patients with recurrent glioblastoma. It is not known if there are differences in outcome between early versus delayed BEV treatment of recurrent glioblastoma. We examined the relationship between the time of starting BEV treatment and outcomes in patients with recurrent glioblastoma. In this retrospective chart review, we identified patients with recurrent glioblastoma diagnosed between 2005 and 2011 who were treated with BEV alone or BEV-containing regimens. Data was analyzed to determine overall survival (OS) from time of diagnosis and progression free survival (PFS) from time of starting BEV. A total of 298 patients were identified, 112 patients received early BEV, 133 patients received delayed BEV, and 53 patients were excluded because they either progressed within 3 months of radiation or received BEV at the time of diagnosis. There was no significant difference in PFS between patients that received early BEV and those that received delayed BEV (5.2 vs. 4.3 months, p = 0.2). Patients treated with delayed BEV had longer OS when compared to those treated with early BEV (25.9 vs. 20.8 months, p = 0.005). In patients with recurrent glioblastoma, there was no significant difference in PFS from the time of starting BEV between early and delayed BEV. Although patients treated with delayed BEV seemed to have longer OS, a conclusion regarding OS outcome requires further prospective trials. These results may indicate that delaying treatment with BEV is not detrimental for survival of patients with recurrent glioblastoma.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Inhibidores de la Angiogénesis/administración & dosificación , Anticuerpos Monoclonales Humanizados/administración & dosificación , Bevacizumab , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Supervivencia sin Enfermedad , Femenino , Glioblastoma/mortalidad , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/patología , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia , Factores de Tiempo , Resultado del Tratamiento
5.
Clin Trials ; 9(6): 741-7, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23180870

RESUMEN

BACKGROUND: Integrated phase II/III trial designs implement the phase II and phase III aspects of oncology studies into a single trial. Despite a body of literature discussing the merits of integrated phase II/III clinical trial designs within the past two decades, implementation of this design has been limited in oncology studies. PURPOSE: We provide a brief discussion of the potential advantages and disadvantages of integrated phase II/III clinical trial designs in oncology and provide an example of the operating characteristics of a Radiation Therapy Oncology Group (RTOG) trial. METHODS: We review the differences among proposed integrated phase II/III designs. Then, we illustrate the use of the design in a brain tumor trial to be conducted by the RTOG and examine the impact of association between endpoints on design performance in terms of type I error, power, study duration, and expected sample size. RESULTS: Although integrated phase II/III designs should not be used in all situations, under appropriate conditions, significant gains can be achieved when using integrated phase II/III designs, including smaller sample size, time and resources savings, and shorter study duration. LIMITATIONS: Data submission without delay and sufficient evaluation of intermediate endpoints are assumed. CONCLUSIONS: Although there are potential benefits in using phase II/III designs, there also may be disadvantages. We recommend running design simulations incorporating theoretical and practical issues before implementing an integrated phase II/III design.


Asunto(s)
Ensayos Clínicos Fase II como Asunto/métodos , Ensayos Clínicos Fase III como Asunto/métodos , Proyectos de Investigación , Anticuerpos Monoclonales Humanizados/administración & dosificación , Antineoplásicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Bevacizumab , Sesgo , Neoplasias Encefálicas/tratamiento farmacológico , Interpretación Estadística de Datos , Determinación de Punto Final , Glioma/tratamiento farmacológico , Humanos , Lomustina/administración & dosificación , Tamaño de la Muestra , Factores de Tiempo
6.
Clin Cancer Res ; 27(15): 4325-4337, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34031054

RESUMEN

PURPOSE: The blood-brain barrier (BBB) inhibits adequate dosing/penetration of therapeutic agents to malignancies in the brain. Low-intensity pulsed ultrasound (LIPU) is a safe therapeutic method of temporary BBB disruption (BBBD) to enhance chemotherapeutic delivery to the tumor and surrounding brain parenchyma for treatment of glioblastoma. EXPERIMENTAL DESIGN: We investigated if LIPU could enhance therapeutic efficacy of anti-PD-1 in C57BL/6 mice bearing intracranial GL261 gliomas, epidermal growth factor receptor variant III (EGFRvIII) chimeric antigen receptor (CAR) T cells in NSG mice with EGFRvIII-U87 gliomas, and a genetically engineered antigen-presenting cell (APC)-based therapy producing the T-cell attracting chemokine CXCL10 in the GL261-bearing mice. RESULTS: Mice treated with anti-PD-1 and LIPU-induced BBBD had a median survival duration of 58 days compared with 39 days for mice treated with anti-PD-1, and long-term survivors all remained alive after contralateral hemisphere rechallenge. CAR T-cell administration with LIPU-induced BBBD resulted in significant increases in CAR T-cell delivery to the CNS after 24 (P < 0.005) and 72 (P < 0.001) hours and increased median survival by greater than 129%, in comparison with CAR T cells alone. Local deposition of CXCL10-secreting APCs in the glioma microenvironment with LIPU enhanced T-cell glioma infiltration during the therapeutic window (P = 0.004) and markedly enhanced survival (P < 0.05). CONCLUSIONS: LIPU increases immune therapeutic delivery to the tumor microenvironment with an associated increase in survival and is an emerging technique for enhancing novel therapies in the brain.


Asunto(s)
Barrera Hematoencefálica/efectos de la radiación , Neoplasias Encefálicas/terapia , Glioma/terapia , Inmunoterapia , Ondas Ultrasónicas , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Resultado del Tratamiento
7.
ESMO Open ; 5(4)2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32661186

RESUMEN

BACKGROUND: Most glioblastoma tumours exhibit intrinsic phosphatidylinositol 3-kinase (PI3K) pathway activation. Preclinical in vitro and in vivo models suggest that buparlisib (an oral pan-PI3K inhibitor) can have an effect on glioblastoma directly and by enhancing the activity of radiation and of temozolomide. METHODS: This was a phase I, two-stage, multicentre, open-label, dose-escalation study of buparlisib in combination with temozolomide and radiotherapy in patients with newly diagnosed glioblastoma. In stage I, patients who completed the concomitant phase of combination of temozolomide and radiation prior to study entry received buparlisib in combination with temozolomide. In stage II, patients received buparlisib in combination with temozolomide and radiotherapy in the concomitant phase and temozolomide in the adjuvant treatment phase. The primary objective was to estimate the maximum tolerated dose (MTD) of buparlisib when combined with the approved first-line treatment of temozolomide and radiotherapy. RESULTS: The MTD of buparlisib in combination with temozolomide at stage I (adjuvant phase only) was 80 mg/day, which was used as the starting dose in stage II. The MTD of buparlisib in combination with temozolomide and radiotherapy in stage II (concomitant + adjuvant phase) was not determined due to the observed dose-limiting toxicities and treatment discontinuations due to adverse events (AEs). In stage I, the most commonly reported AEs were nausea (72.7%) and fatigue (59.1%). In stage II, the most commonly reported AEs were fatigue and nausea (56.3% each). No on-treatment deaths were reported during the study. CONCLUSION: Considering that the primary objective of estimating the MTD was not achieved in addition to the observed challenging safety profile of buparlisib in combination with radiotherapy and temozolomide, Novartis decided not to pursue the development of buparlisib in newly diagnosed glioblastoma.Trial registration numberClinicalTrials.gov identifier: NCT01473901.


Asunto(s)
Glioblastoma , Adulto , Anciano , Aminopiridinas , Protocolos de Quimioterapia Combinada Antineoplásica , Quimioradioterapia , Femenino , Glioblastoma/terapia , Humanos , Masculino , Persona de Mediana Edad , Morfolinas , Fosfatidilinositol 3-Quinasas , Temozolomida
8.
ESMO Open ; 5(4)2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32665311

RESUMEN

BACKGROUND: Glioblastoma relapse is associated with activation of phosphatidylinositol 3-kinase (PI3K) signalling pathway. In preclinical studies, the pan-PI3K inhibitor buparlisib showed antitumour activity in glioma models. METHODS: This was a two-part, multicentre, phase Ib/II study in patients with recurrent glioblastoma pretreated with radiotherapy and temozolomide standard of care. Patients received buparlisib (80 mg or 100 mg once daily) plus carboplatin (area under the curve (AUC)=5 every 3 weeks), or buparlisib (60 mg once daily) plus lomustine (100 mg/m2 every 6 weeks). The primary endpoint was to determine the maximum tolerable dose (MTD) and/or recommended phase II dose of buparlisib plus carboplatin or lomustine. RESULTS: Between 28 February 2014 and 7 July 2016, 35 patients were enrolled and treated with buparlisib plus carboplatin (n=17; buparlisib (80 mg) plus carboplatin, n=3; and buparlisib (100 mg) plus carboplatin, n=14), or buparlisib (60 mg) plus lomustine (n=18). The MTD of buparlisib was determined to be 100 mg per day in combination with carboplatin at an AUC of 5 every 3 weeks. The MTD of buparlisib in combination with lomustine could not be determined as it did not satisfy the MTD criteria per the Bayesian logistic regression model. CONCLUSION: The overall safety profile of buparlisib remained unchanged, and no new or unexpected safety findings were reported in this study. Preliminary assessment for both combinations did not demonstrate sufficient antitumour activity compared with historical data on single-agent carboplatin or lomustine. TRIAL REGISTRATION NUMBER: NCT01934361.


Asunto(s)
Glioblastoma , Anciano , Aminopiridinas , Protocolos de Quimioterapia Combinada Antineoplásica , Teorema de Bayes , Carboplatino/uso terapéutico , Femenino , Glioblastoma/tratamiento farmacológico , Humanos , Lomustina/uso terapéutico , Masculino , Persona de Mediana Edad , Morfolinas , Fosfatidilinositol 3-Quinasas/uso terapéutico , Recurrencia
9.
Clin Cancer Res ; 26(18): 4983-4994, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32605912

RESUMEN

PURPOSE: Patients with central nervous system (CNS) tumors are typically treated with radiotherapy, but this is not curative and results in the upregulation of phosphorylated STAT3 (p-STAT3), which drives invasion, angiogenesis, and immune suppression. Therefore, we investigated the combined effect of an inhibitor of STAT3 and whole-brain radiotherapy (WBRT) in a murine model of glioma. EXPERIMENTAL DESIGN: C57BL/6 mice underwent intracerebral implantation of GL261 glioma cells, WBRT, and treatment with WP1066, a blood-brain barrier-penetrant inhibitor of the STAT3 pathway, or the two in combination. The role of the immune system was evaluated using tumor rechallenge strategies, immune-incompetent backgrounds, immunofluorescence, immune phenotyping of tumor-infiltrating immune cells (via flow cytometry), and NanoString gene expression analysis of 770 immune-related genes from immune cells, including those directly isolated from the tumor microenvironment. RESULTS: The combination of WP1066 and WBRT resulted in long-term survivors and enhanced median survival time relative to monotherapy in the GL261 glioma model (combination vs. control P < 0.0001). Immunologic memory appeared to be induced, because mice were protected during subsequent tumor rechallenge. The therapeutic effect of the combination was completely lost in immune-incompetent animals. NanoString analysis and immunofluorescence revealed immunologic reprograming in the CNS tumor microenvironment specifically affecting dendritic cell antigen presentation and T-cell effector functions. CONCLUSIONS: This study indicates that the combination of STAT3 inhibition and WBRT enhances the therapeutic effect against gliomas in the CNS by inducing dendritic cell and T-cell interactions in the CNS tumor.


Asunto(s)
Neoplasias Encefálicas/terapia , Comunicación Celular/inmunología , Quimioradioterapia/métodos , Glioma/terapia , Factor de Transcripción STAT3/antagonistas & inhibidores , Animales , Presentación de Antígeno/efectos de los fármacos , Presentación de Antígeno/efectos de la radiación , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Comunicación Celular/efectos de los fármacos , Comunicación Celular/efectos de la radiación , Línea Celular Tumoral/ultraestructura , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/efectos de la radiación , Modelos Animales de Enfermedad , Glioma/inmunología , Glioma/patología , Humanos , Memoria Inmunológica/efectos de los fármacos , Ratones , Piridinas/administración & dosificación , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/efectos de la radiación , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de la radiación , Tirfostinos/administración & dosificación
10.
Neuro Oncol ; 22(8): 1073-1113, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32328653

RESUMEN

Glioblastomas are the most common form of malignant primary brain tumor and an important cause of morbidity and mortality. In recent years there have been important advances in understanding the molecular pathogenesis and biology of these tumors, but this has not translated into significantly improved outcomes for patients. In this consensus review from the Society for Neuro-Oncology (SNO) and the European Association of Neuro-Oncology (EANO), the current management of isocitrate dehydrogenase wildtype (IDHwt) glioblastomas will be discussed. In addition, novel therapies such as targeted molecular therapies, agents targeting DNA damage response and metabolism, immunotherapies, and viral therapies will be reviewed, as well as the current challenges and future directions for research.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Quimioradioterapia , Ensayos Clínicos Fase III como Asunto , Consenso , Glioblastoma/enzimología , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Ensayos Clínicos Controlados Aleatorios como Asunto
11.
Cancer Cell ; 35(3): 504-518.e7, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30827889

RESUMEN

Ionizing radiation (IR) and chemotherapy are standard-of-care treatments for glioblastoma (GBM) patients and both result in DNA damage, however, the clinical efficacy is limited due to therapeutic resistance. We identified a mechanism of such resistance mediated by phosphorylation of PTEN on tyrosine 240 (pY240-PTEN) by FGFR2. pY240-PTEN is rapidly elevated and bound to chromatin through interaction with Ki-67 in response to IR treatment and facilitates the recruitment of RAD51 to promote DNA repair. Blocking Y240 phosphorylation confers radiation sensitivity to tumors and extends survival in GBM preclinical models. Y240F-Pten knockin mice showed radiation sensitivity. These results suggest that FGFR-mediated pY240-PTEN is a key mechanism of radiation resistance and is an actionable target for improving radiotherapy efficacy.


Asunto(s)
Neoplasias Encefálicas/terapia , Núcleo Celular/metabolismo , Glioma/terapia , Fosfohidrolasa PTEN/metabolismo , Pirimidinas/administración & dosificación , Tolerancia a Radiación/efectos de los fármacos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , Neoplasias Encefálicas/metabolismo , Reparación del ADN/efectos de los fármacos , Femenino , Glioma/metabolismo , Humanos , Masculino , Ratones , Fosforilación/efectos de los fármacos , Pirimidinas/farmacología , Recombinasa Rad51/metabolismo , Tirosina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Neuro Oncol ; 17(2): 180-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25165194

RESUMEN

Glioblastoma is the most common primary brain malignancy and is associated with poor prognosis despite aggressive local and systemic therapy, which is related to a paucity of viable treatment options in both the newly diagnosed and recurrent settings. Even so, the rapidly increasing number of targeted therapies being evaluated in oncology clinical trials offers hope for the future. Given the broad range of possibilities for future trials, the Brain Malignancy Steering Committee convened a clinical trials planning meeting that was held at the Udvar-Hazy Center in Chantilly, Virginia, on September 19 and 20, 2013. This manuscript reports the deliberations leading up to the event from the Targeted Therapies Working Group and the results of the meeting.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Ensayos Clínicos como Asunto , Glioblastoma/diagnóstico , Glioblastoma/terapia , Biomarcadores , Determinación de Punto Final , Humanos
15.
J Clin Oncol ; 31(26): 3212-8, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-23940216

RESUMEN

PURPOSE: A randomized, phase III, placebo-controlled, partially blinded clinical trial (REGAL [Recent in in Glioblastoma Alone and With Lomustine]) was conducted to determine the efficacy of cediranib, an oral pan-vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor, either as monotherapy or in combination with lomustine versus lomustine in patients with recurrent glioblastoma. PATIENTS AND METHODS: Patients (N = 325) with recurrent glioblastoma who previously received radiation and temozolomide were randomly assigned 2:2:1 to receive (1) cediranib (30 mg) monotherapy; (2) cediranib (20 mg) plus lomustine (110 mg/m(2)); (3) lomustine (110 mg/m(2)) plus a placebo. The primary end point was progression-free survival based on blinded, independent radiographic assessment of postcontrast T1-weighted and noncontrast T2-weighted magnetic resonance imaging (MRI) brain scans. RESULTS: The primary end point of progression-free survival (PFS) was not significantly different for either cediranib alone (hazard ratio [HR] = 1.05; 95% CI, 0.74 to 1.50; two-sided P = .90) or cediranib in combination with lomustine (HR = 0.76; 95% CI, 0.53 to 1.08; two-sided P = .16) versus lomustine based on independent or local review of postcontrast T1-weighted MRI. CONCLUSION: This study did not meet its primary end point of PFS prolongation with cediranib either as monotherapy or in combination with lomustine versus lomustine in patients with recurrent glioblastoma, although cediranib showed evidence of clinical activity on some secondary end points including time to deterioration in neurologic status and corticosteroid-sparing effects.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Encefálicas/mortalidad , Femenino , Estudios de Seguimiento , Glioblastoma/mortalidad , Humanos , Agencias Internacionales , Lomustina/administración & dosificación , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/mortalidad , Pronóstico , Quinazolinas/administración & dosificación , Tasa de Supervivencia
16.
Neuro Oncol ; 13(3): 353-61, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21310734

RESUMEN

To review the strengths and weaknesses of primary and auxiliary end points for clinical trials among patients with high-grade glioma (HGG). Recent advances in outcome for patients with newly diagnosed and recurrent HGG, coupled with the development of multiple promising therapeutics with myriad antitumor actions, have led to significant growth in the number of clinical trials for patients with HGG. Appropriate clinical trial design and the incorporation of optimal end points are imperative to efficiently and effectively evaluate such agents and continue to advance outcome. Growing recognition of limitations weakening the reliability of traditional clinical trial primary end points has generated increasing uncertainty of how best to evaluate promising therapeutics for patients with HGG. The phenomena of pseudoprogression and pseudoresponse have made imaging-based end points, including overall radiographic response and progression-free survival, problematic. Although overall survival is considered the "gold-standard" end point, recently identified active salvage therapies such as bevacizumab may diminish the association between presalvage therapy and overall survival. Finally, advances in imaging as well as the assessment of patient function and well being have strengthened interest in auxiliary end points assessing these aspects of patient care and outcome. Better appreciation of the strengths and limitations of primary end points will lead to more effective clinical trial strategies. Technical advances in imaging as well as improved survival for patients with HGG support the further development of auxiliary end points evaluating novel imaging approaches as well as measures of patient function and well being.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Ensayos Clínicos como Asunto , Glioma/diagnóstico , Glioma/terapia , Terapia Recuperativa , Neoplasias Encefálicas/mortalidad , Glioma/mortalidad , Humanos , Tasa de Supervivencia
17.
J Clin Oncol ; 28(11): 1963-72, 2010 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-20231676

RESUMEN

Currently, the most widely used criteria for assessing response to therapy in high-grade gliomas are based on two-dimensional tumor measurements on computed tomography (CT) or magnetic resonance imaging (MRI), in conjunction with clinical assessment and corticosteroid dose (the Macdonald Criteria). It is increasingly apparent that there are significant limitations to these criteria, which only address the contrast-enhancing component of the tumor. For example, chemoradiotherapy for newly diagnosed glioblastomas results in transient increase in tumor enhancement (pseudoprogression) in 20% to 30% of patients, which is difficult to differentiate from true tumor progression. Antiangiogenic agents produce high radiographic response rates, as defined by a rapid decrease in contrast enhancement on CT/MRI that occurs within days of initiation of treatment and that is partly a result of reduced vascular permeability to contrast agents rather than a true antitumor effect. In addition, a subset of patients treated with antiangiogenic agents develop tumor recurrence characterized by an increase in the nonenhancing component depicted on T2-weighted/fluid-attenuated inversion recovery sequences. The recognition that contrast enhancement is nonspecific and may not always be a true surrogate of tumor response and the need to account for the nonenhancing component of the tumor mandate that new criteria be developed and validated to permit accurate assessment of the efficacy of novel therapies. The Response Assessment in Neuro-Oncology Working Group is an international effort to develop new standardized response criteria for clinical trials in brain tumors. In this proposal, we present the recommendations for updated response criteria for high-grade gliomas.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Diagnóstico por Imagen/normas , Glioma/diagnóstico , Glioma/terapia , Ensayos Clínicos como Asunto , Diagnóstico por Imagen/métodos , Guías como Asunto , Humanos , Pronóstico , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA