Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 173(3): 677-692.e20, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677512

RESUMEN

RNA-binding proteins (RBPs) with prion-like domains (PrLDs) phase transition to functional liquids, which can mature into aberrant hydrogels composed of pathological fibrils that underpin fatal neurodegenerative disorders. Several nuclear RBPs with PrLDs, including TDP-43, FUS, hnRNPA1, and hnRNPA2, mislocalize to cytoplasmic inclusions in neurodegenerative disorders, and mutations in their PrLDs can accelerate fibrillization and cause disease. Here, we establish that nuclear-import receptors (NIRs) specifically chaperone and potently disaggregate wild-type and disease-linked RBPs bearing a NLS. Karyopherin-ß2 (also called Transportin-1) engages PY-NLSs to inhibit and reverse FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2 fibrillization, whereas Importin-α plus Karyopherin-ß1 prevent and reverse TDP-43 fibrillization. Remarkably, Karyopherin-ß2 dissolves phase-separated liquids and aberrant fibrillar hydrogels formed by FUS and hnRNPA1. In vivo, Karyopherin-ß2 prevents RBPs with PY-NLSs accumulating in stress granules, restores nuclear RBP localization and function, and rescues degeneration caused by disease-linked FUS and hnRNPA2. Thus, NIRs therapeutically restore RBP homeostasis and mitigate neurodegeneration.


Asunto(s)
Transporte Activo de Núcleo Celular , Priones/química , Proteínas de Unión al ARN/química , Receptores Citoplasmáticos y Nucleares/química , Adulto , Anciano , Animales , Citoplasma/química , Proteínas de Unión al ADN/química , Drosophila melanogaster , Femenino , Proteínas Fluorescentes Verdes/química , Células HEK293 , Células HeLa , Homeostasis , Humanos , Carioferinas/química , Masculino , Persona de Mediana Edad , Chaperonas Moleculares/química , Mutación , Enfermedades Neurodegenerativas/patología , Dominios Proteicos , Proteína EWS de Unión a ARN/química , Factores Asociados con la Proteína de Unión a TATA/química , beta Carioferinas/química
2.
Cell ; 170(6): 1197-1208.e12, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28886386

RESUMEN

Regulation is central to the functional versatility of cytoplasmic dynein, a motor involved in intracellular transport, cell division, and neurodevelopment. Previous work established that Lis1, a conserved regulator of dynein, binds to its motor domain and induces a tight microtubule-binding state in dynein. The work we present here-a combination of biochemistry, single-molecule assays, and cryoelectron microscopy-led to the surprising discovery that Lis1 has two opposing modes of regulating dynein, being capable of inducing both low and high affinity for the microtubule. We show that these opposing modes depend on the stoichiometry of Lis1 binding to dynein and that this stoichiometry is regulated by the nucleotide state of dynein's AAA3 domain. The low-affinity state requires Lis1 to also bind to dynein at a novel conserved site, mutation of which disrupts Lis1's function in vivo. We propose a new model for the regulation of dynein by Lis1.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Dineínas/química , Humanos , Proteínas Asociadas a Microtúbulos/química , Modelos Moleculares , Proteínas Motoras Moleculares/metabolismo , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Alineación de Secuencia
3.
Cell ; 156(1-2): 170-82, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439375

RESUMEN

There are no therapies that reverse the proteotoxic misfolding events that underpin fatal neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Hsp104, a conserved hexameric AAA+ protein from yeast, solubilizes disordered aggregates and amyloid but has no metazoan homolog and only limited activity against human neurodegenerative disease proteins. Here, we reprogram Hsp104 to rescue TDP-43, FUS, and α-synuclein proteotoxicity by mutating single residues in helix 1, 2, or 3 of the middle domain or the small domain of nucleotide-binding domain 1. Potentiated Hsp104 variants enhance aggregate dissolution, restore proper protein localization, suppress proteotoxicity, and in a C. elegans PD model attenuate dopaminergic neurodegeneration. Potentiating mutations reconfigure how Hsp104 subunits collaborate, desensitize Hsp104 to inhibition, obviate any requirement for Hsp70, and enhance ATPase, translocation, and unfoldase activity. Our work establishes that disease-associated aggregates and amyloid are tractable targets and that enhanced disaggregases can restore proteostasis and mitigate neurodegeneration.


Asunto(s)
Caenorhabditis elegans , Modelos Animales de Enfermedad , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/metabolismo , Proteínas de Choque Térmico/química , Humanos , Modelos Moleculares , Mutagénesis , Neuronas/citología , Neuronas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Pliegue de Proteína , Estructura Terciaria de Proteína , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Deficiencias en la Proteostasis/terapia , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/química , alfa-Sinucleína/metabolismo
4.
Annu Rev Cell Dev Biol ; 31: 83-108, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26436706

RESUMEN

Until recently, dynein was the least understood of the cytoskeletal motors. However, a wealth of new structural, mechanistic, and cell biological data is shedding light on how this complicated minus-end-directed, microtubule-based motor works. Cytoplasmic dynein-1 performs a wide array of functions in most eukaryotes, both in interphase, in which it transports organelles, proteins, mRNAs, and viruses, and in mitosis and meiosis. Mutations in dynein or its regulators are linked to neurodevelopmental and neurodegenerative diseases. Here, we begin by providing a synthesis of recent data to describe the current model of dynein's mechanochemical cycle. Next, we discuss regulators of dynein, with particular focus on those that directly interact with the motor to modulate its recruitment to microtubules, initiate cargo transport, or activate minus-end-directed motility.


Asunto(s)
Dineínas Citoplasmáticas/metabolismo , Animales , Transporte Biológico/fisiología , Humanos , Meiosis/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Orgánulos/metabolismo , Orgánulos/fisiología
5.
Trends Biochem Sci ; 48(4): 315-316, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36754682

RESUMEN

In a recent study, Chaaban and Carter use cryo-electron microscopy (cryo-EM) and an innovative data-processing pipeline to determine the first high-resolution structure of the dynein-dynactin-BICDR1 complex assembled on microtubules. The structure of the complex reveals novel stoichiometry and provides new mechanistic insight into dynein function and mechanism.


Asunto(s)
Dineínas , Proteínas Asociadas a Microtúbulos , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/análisis , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Microscopía por Crioelectrón , Microtúbulos/química , Microtúbulos/metabolismo , Complejo Dinactina/análisis , Complejo Dinactina/química , Complejo Dinactina/metabolismo
6.
Cell ; 151(4): 778-793, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23141537

RESUMEN

It is not understood how Hsp104, a hexameric AAA+ ATPase from yeast, disaggregates diverse structures, including stress-induced aggregates, prions, and α-synuclein conformers connected to Parkinson disease. Here, we establish that Hsp104 hexamers adapt different mechanisms of intersubunit collaboration to disaggregate stress-induced aggregates versus amyloid. To resolve disordered aggregates, Hsp104 subunits collaborate noncooperatively via probabilistic substrate binding and ATP hydrolysis. To disaggregate amyloid, several subunits cooperatively engage substrate and hydrolyze ATP. Importantly, Hsp104 variants with impaired intersubunit communication dissolve disordered aggregates, but not amyloid. Unexpectedly, prokaryotic ClpB subunits collaborate differently than Hsp104 and couple probabilistic substrate binding to cooperative ATP hydrolysis, which enhances disordered aggregate dissolution but sensitizes ClpB to inhibition and diminishes amyloid disaggregation. Finally, we establish that Hsp104 hexamers deploy more subunits to disaggregate Sup35 prion strains with more stable "cross-ß" cores. Thus, operational plasticity enables Hsp104 to robustly dissolve amyloid and nonamyloid clients, which impose distinct mechanical demands.


Asunto(s)
Amiloide/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Endopeptidasa Clp , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , Priones/metabolismo , Pliegue de Proteína
7.
J Biol Chem ; 299(6): 104735, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37086789

RESUMEN

Dynein is the primary minus-end-directed microtubule motor protein. To achieve activation, dynein binds to the dynactin complex and an adaptor to form the "activated dynein complex." The protein Lis1 aids activation by binding to dynein and promoting its association with dynactin and the adaptor. Ndel1 and its paralog Nde1 are dynein- and Lis1-binding proteins that help control dynein localization within the cell. Cell-based assays suggest that Ndel1-Nde1 also work with Lis1 to promote dynein activation, although the underlying mechanism is unclear. Using purified proteins and quantitative binding assays, here we found that the C-terminal region of Ndel1 contributes to dynein binding and negatively regulates binding to Lis1. Using single-molecule imaging and protein biochemistry, we observed that Ndel1 inhibits dynein activation in two distinct ways. First, Ndel1 disfavors the formation of the activated dynein complex. We found that phosphomimetic mutations in the C-terminal domain of Ndel1 increase its ability to inhibit dynein-dynactin-adaptor complex formation. Second, we observed that Ndel1 interacts with dynein and Lis1 simultaneously and sequesters Lis1 away from its dynein-binding site. In doing this, Ndel1 prevents Lis1-mediated dynein activation. Together, our work suggests that in vitro, Ndel1 is a negative regulator of dynein activation, which contrasts with cellular studies where Ndel1 promotes dynein activity. To reconcile our findings with previous work, we posit that Ndel1 functions to scaffold dynein and Lis1 together while keeping dynein in an inhibited state. We speculate that Ndel1 release can be triggered in cellular settings to allow for timed dynein activation.


Asunto(s)
Proteínas Portadoras , Complejo Dinactina , Dineínas , Proteínas Asociadas a Microtúbulos , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Citoesqueleto/metabolismo , Complejo Dinactina/genética , Complejo Dinactina/metabolismo , Dineínas/genética , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Humanos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo
8.
Mol Cell ; 57(5): 836-849, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25620563

RESUMEN

The structural basis by which Hsp104 dissolves disordered aggregates and prions is unknown. A single subunit within the Hsp104 hexamer can solubilize disordered aggregates, whereas prion dissolution requires collaboration by multiple Hsp104 subunits. Here, we establish that the poorly understood Hsp104 N-terminal domain (NTD) enables this operational plasticity. Hsp104 lacking the NTD (Hsp104(ΔN)) dissolves disordered aggregates but cannot dissolve prions or be potentiated by activating mutations. We define how Hsp104(ΔN) invariably stimulates Sup35 prionogenesis by fragmenting prions without solubilizing Sup35, whereas Hsp104 couples Sup35 prion fragmentation and dissolution. Volumetric reconstruction of Hsp104 hexamers in ATPγS, ADP-AlFx (hydrolysis transition state mimic), and ADP via small-angle X-ray scattering revealed a peristaltic pumping motion upon ATP hydrolysis, which drives directional substrate translocation through the central Hsp104 channel and is profoundly altered in Hsp104(ΔN). We establish that the Hsp104 NTD enables cooperative substrate translocation, which is critical for prion dissolution and potentiated disaggregase activity.


Asunto(s)
Proteínas de Choque Térmico/química , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Microscopía Electrónica , Microscopía Fluorescente , Modelos Moleculares , Mutación , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X
9.
Nat Mater ; 20(6): 883-891, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33479528

RESUMEN

Microtubule instability stems from the low energy of tubulin dimer interactions, which sets the growing polymer close to its disassembly conditions. Molecular motors use ATP hydrolysis to produce mechanical work and move on microtubules. This raises the possibility that the mechanical work produced by walking motors can break dimer interactions and trigger microtubule disassembly. We tested this hypothesis by studying the interplay between microtubules and moving molecular motors in vitro. Our results show that molecular motors can remove tubulin dimers from the lattice and rapidly destroy microtubules. We also found that dimer removal by motors was compensated for by the insertion of free tubulin dimers into the microtubule lattice. This self-repair mechanism allows microtubules to survive the damage induced by molecular motors as they move along their tracks. Our study reveals the existence of coupling between the motion of molecular motors and the renewal of the microtubule lattice.


Asunto(s)
Microtúbulos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Movimiento , Modelos Biológicos
10.
J Biol Chem ; 289(2): 848-67, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24280225

RESUMEN

The homologous hexameric AAA(+) proteins, Hsp104 from yeast and ClpB from bacteria, collaborate with Hsp70 to dissolve disordered protein aggregates but employ distinct mechanisms of intersubunit collaboration. How Hsp104 and ClpB coordinate polypeptide handover with Hsp70 is not understood. Here, we define conserved distal loop residues between middle domain (MD) helix 1 and 2 that are unexpectedly critical for Hsp104 and ClpB collaboration with Hsp70. Surprisingly, the Hsp104 and ClpB MD distal loop does not contact Hsp70 but makes intrasubunit contacts with nucleotide-binding domain 2 (NBD2). Thus, the MD does not invariably project out into solution as in one structural model of Hsp104 and ClpB hexamers. These intrasubunit contacts as well as those between MD helix 2 and NBD1 are different in Hsp104 and ClpB. NBD2-MD contacts dampen disaggregase activity and must separate for protein disaggregation. We demonstrate that ClpB requires DnaK more stringently than Hsp104 requires Hsp70 for protein disaggregation. Thus, we reveal key differences in how Hsp104 and ClpB coordinate polypeptide handover with Hsp70, which likely reflects differential tuning for yeast and bacterial proteostasis.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas HSP70 de Choque Térmico/química , Proteínas de Choque Térmico/química , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Sitios de Unión/genética , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Endopeptidasa Clp , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Calor , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , Desnaturalización Proteica , Estructura Secundaria de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido , Difracción de Rayos X
11.
bioRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38915497

RESUMEN

Cytoplasmic dynein-1 (dynein) is a microtubule-associated, minus end-directed motor that traffics hundreds of different cargos. Dynein must discriminate between cargos and traffic them at the appropriate time from the correct cellular region. How dynein's trafficking activity is regulated in time or cellular space remains poorly understood. Here, we identify CCSer2 as the first known protein to gate dynein activity in the spatial dimension. CCSer2 promotes the migration of developing zebrafish primordium cells and of cultured human cells by facilitating the trafficking of cargos that are acted on by cortically localized dynein. CCSer2 inhibits the interaction between dynein and its regulator Ndel1 exclusively at the cell periphery, resulting in localized dynein activation. Our findings suggest that the spatial specificity of dynein is achieved by the localization of proteins that disinhibit Ndel1. We propose that CCSer2 defines a broader class of proteins that activate dynein in distinct microenvironments via Ndel1 inhibition.

12.
Biochim Biophys Acta ; 1823(1): 29-39, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21843558

RESUMEN

Hsp104 in yeast and ClpB in bacteria are homologous, hexameric AAA+ proteins and Hsp100 chaperones, which function in the stress response as ring-translocases that drive protein disaggregation and reactivation. Both Hsp104 and ClpB contain a distinctive coiled-coil middle domain (MD) inserted in the first AAA+ domain, which distinguishes them from other AAA+ proteins and Hsp100 family members. Here, we focus on recent developments concerning the location and function of the MD in these hexameric molecular machines, which remains an outstanding question. While the atomic structure of the hexameric assembly of Hsp104 and ClpB remains uncertain, recent advances have illuminated that the MD is critical for the intrinsic disaggregase activity of the hexamer and mediates key functional interactions with the Hsp70 chaperone system (Hsp70 and Hsp40) that empower protein disaggregation.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Proteínas de Saccharomyces cerevisiae/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Endopeptidasa Clp , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Homología Estructural de Proteína
13.
Elife ; 122023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36692009

RESUMEN

The lissencephaly 1 protein, LIS1, is mutated in type-1 lissencephaly and is a key regulator of cytoplasmic dynein-1. At a molecular level, current models propose that LIS1 activates dynein by relieving its autoinhibited form. Previously we reported a 3.1 Å structure of yeast dynein bound to Pac1, the yeast homologue of LIS1, which revealed the details of their interactions (Gillies et al., 2022). Based on this structure, we made mutations that disrupted these interactions and showed that they were required for dynein's function in vivo in yeast. We also used our yeast dynein-Pac1 structure to design mutations in human dynein to probe the role of LIS1 in promoting the assembly of active dynein complexes. These mutations had relatively mild effects on dynein activation, suggesting that there may be differences in how dynein and Pac1/LIS1 interact between yeast and humans. Here, we report cryo-EM structures of human dynein-LIS1 complexes. Our new structures reveal the differences between the yeast and human systems, provide a blueprint to disrupt the human dynein-LIS1 interactions more accurately, and map type-1 lissencephaly disease mutations, as well as mutations in dynein linked to malformations of cortical development/intellectual disability, in the context of the dynein-LIS1 complex.


Asunto(s)
Lisencefalias Clásicas y Heterotopias Subcorticales en Banda , Proteínas de Saccharomyces cerevisiae , Humanos , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Endorribonucleasas/metabolismo
14.
bioRxiv ; 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36747695

RESUMEN

Dynein is the primary minus-end-directed microtubule motor [1]. To achieve activation, dynein binds to the dynactin complex and an adaptor to form the "activated dynein complex" [2, 3]. The protein Lis1 aids activation by binding to dynein and promoting its association with dynactin and adaptor [4, 5]. Ndel1 and its orthologue Nde1 are dynein and Lis1 binding proteins that help control where dynein localizes within the cell [6]. Cell-based assays suggest that Ndel1/Nde1 also work with Lis1 to promote dynein activation, although the underlying mechanism is unclear [6]. Using purified proteins and quantitative binding assays, we found that Ndel1's C-terminal region contributes to binding to dynein and negatively regulates binding to Lis1. Using single-molecule imaging and protein biochemistry, we observed that Ndel1 inhibits dynein activation in two distinct ways. First, Ndel1 disfavors the formation of the activated dynein complex. We found that phosphomimetic mutations in Ndel1's C-terminal domain increase its ability to inhibit dynein-dynactin-adaptor complex formation. Second, we observed that Ndel1 interacts with dynein and Lis1 simultaneously and sequesters Lis1 away from its dynein binding site. In doing this, Ndel1 prevents Lis1-mediated dynein activation. Our work suggests that in vitro, Ndel1 is a negative regulator of dynein activation, which contrasts with cellular studies where Ndel1 promotes dynein activity. To reconcile our findings with previous work, we posit that Ndel1 functions to scaffold dynein and Lis1 together while keeping dynein in an inhibited state. We speculate that Ndel1 release can be triggered in cellular settings to allow for timed dynein activation.

15.
Nat Commun ; 14(1): 1715, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973253

RESUMEN

Spindle formation in male meiosis relies on the canonical centrosome system, which is distinct from acentrosomal oocyte meiosis, but its specific regulatory mechanisms remain unknown. Herein, we report that DYNLRB2 (Dynein light chain roadblock-type-2) is a male meiosis-upregulated dynein light chain that is indispensable for spindle formation in meiosis I. In Dynlrb2 KO mouse testes, meiosis progression is arrested in metaphase I due to the formation of multipolar spindles with fragmented pericentriolar material (PCM). DYNLRB2 inhibits PCM fragmentation through two distinct pathways; suppressing premature centriole disengagement and targeting NuMA (nuclear mitotic apparatus) to spindle poles. The ubiquitously expressed mitotic counterpart, DYNLRB1, has similar roles in mitotic cells and maintains spindle bipolarity by targeting NuMA and suppressing centriole overduplication. Our work demonstrates that two distinct dynein complexes containing DYNLRB1 or DYNLRB2 are separately used in mitotic and meiotic spindle formations, respectively, and that both have NuMA as a common target.


Asunto(s)
Dineínas , Huso Acromático , Ratones , Animales , Masculino , Dineínas/genética , Dineínas/metabolismo , Huso Acromático/metabolismo , Centrosoma/metabolismo , Meiosis , Metafase
16.
bioRxiv ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-37693451

RESUMEN

Viruses exploit host cytoskeletal elements and motor proteins for trafficking through the dense cytoplasm. Yet the molecular mechanism that describes how viruses connect to the motor machinery is unknown. Here, we demonstrate the first example of viral microtubule trafficking from purified components: HIV-1 hijacking microtubule transport machinery. We discover that HIV-1 directly binds to the retrograde microtubule-associated motor, dynein, and not via a cargo adaptor, as previously suggested. Moreover, we show that HIV-1 motility is supported by multiple, diverse dynein cargo adaptors as HIV-1 binds to dynein light and intermediate chains on dynein's tail. Further, we demonstrate that multiple dynein motors tethered to rigid cargoes, like HIV-1 capsids, display reduced motility, distinct from the behavior of multiple motors on membranous cargoes. Our results introduce a new model of viral trafficking wherein a pathogen opportunistically 'hijacks' the microtubule transport machinery for motility, enabling multiple transport pathways through the host cytoplasm.

17.
Biochemistry ; 51(30): 6017-27, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22769726

RESUMEN

To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and (19)F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan ((5F)W). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that (5F)W incorporation lowered binding affinity for the HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when (5F)W was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. (19)F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each (5F)W in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody-antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody-antigen complexes with altered function that may not be discernible by other biophysical techniques.


Asunto(s)
Anticuerpos Monoclonales/química , Antígenos/metabolismo , Flúor/metabolismo , Muramidasa/química , Animales , Anticuerpos Monoclonales/metabolismo , Antígenos/química , Sitios de Unión de Anticuerpos , Cristalografía por Rayos X/métodos , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Marcaje Isotópico/métodos , Ratones , Simulación de Dinámica Molecular , Muramidasa/inmunología , Muramidasa/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Unión Proteica/inmunología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
18.
Front Cell Dev Biol ; 10: 871935, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493069

RESUMEN

Cytoplasmic dynein-1 (dynein) is the primary microtubule minus-end directed molecular motor in most eukaryotes. As such, dynein has a broad array of functions that range from driving retrograde-directed cargo trafficking to forming and focusing the mitotic spindle. Dynein does not function in isolation. Instead, a network of regulatory proteins mediate dynein's interaction with cargo and modulate dynein's ability to engage with and move on the microtubule track. A flurry of research over the past decade has revealed the function and mechanism of many of dynein's regulators, including Lis1, dynactin, and a family of proteins called activating adaptors. However, the mechanistic details of two of dynein's important binding partners, the paralogs Nde1 and Ndel1, have remained elusive. While genetic studies have firmly established Nde1/Ndel1 as players in the dynein transport pathway, the nature of how they regulate dynein activity is unknown. In this review, we will compare Ndel1 and Nde1 with a focus on discerning if the proteins are functionally redundant, outline the data that places Nde1/Ndel1 in the dynein transport pathway, and explore the literature supporting and opposing the predominant hypothesis about Nde1/Ndel1's molecular effect on dynein activity.

19.
Elife ; 112022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35703493

RESUMEN

Dynein harnesses ATP hydrolysis to move cargo on microtubules in multiple biological contexts. Dynein meets a unique challenge in meiosis by moving chromosomes tethered to the nuclear envelope to facilitate homolog pairing essential for gametogenesis. Though processive dynein motility requires binding to an activating adaptor, the identity of the activating adaptor required for dynein to move meiotic chromosomes is unknown. We show that the meiosis-specific nuclear-envelope protein KASH5 is a dynein activating adaptor: KASH5 directly binds dynein using a mechanism conserved among activating adaptors and converts dynein into a processive motor. We map the dynein-binding surface of KASH5, identifying mutations that abrogate dynein binding in vitro and disrupt recruitment of the dynein machinery to the nuclear envelope in cultured cells and mouse spermatocytes in vivo. Our study identifies KASH5 as the first transmembrane dynein activating adaptor and provides molecular insights into how it activates dynein during meiosis.


Asunto(s)
Dineínas , Proteínas Asociadas a Microtúbulos , Animales , Segregación Cromosómica , Complejo Dinactina/metabolismo , Dineínas/genética , Dineínas/metabolismo , Masculino , Meiosis , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo
20.
Nat Cell Biol ; 22(5): 518-525, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32341549

RESUMEN

Cytoplasmic dynein-1 is a molecular motor that drives nearly all minus-end-directed microtubule-based transport in human cells, performing functions that range from retrograde axonal transport to mitotic spindle assembly1,2. Activated dynein complexes consist of one or two dynein dimers, the dynactin complex and an 'activating adaptor', and they show faster velocity when two dynein dimers are present3-6. Little is known about the assembly process of this massive ~4 MDa complex. Here, using purified recombinant human proteins, we uncover a role for the dynein-binding protein LIS1 in promoting the formation of activated dynein-dynactin complexes that contain two dynein dimers. Complexes activated by proteins representing three families of activating adaptors-BicD2, Hook3 and Ninl-all show enhanced motile properties in the presence of LIS1. Activated dynein complexes do not require sustained LIS1 binding for fast velocity. Using cryo-electron microscopy, we show that human LIS1 binds to dynein at two sites on the motor domain of dynein. Our research suggests that LIS1 binding at these sites functions in multiple stages of assembling the motile dynein-dynactin-activating adaptor complex.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Dineínas Citoplasmáticas/metabolismo , Complejo Dinactina/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Proteínas Portadoras/metabolismo , Células HEK293 , Humanos , Ratones , Microtúbulos/metabolismo , Unión Proteica/fisiología , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA