Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Physiol Plant ; 155(3): 267-80, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25496221

RESUMEN

Eutrema salsugineum is an extremophile related to Arabidopsis. Accessions from Yukon, Canada and Shandong, China, were evaluated for their tolerance to water deficits. Plants were exposed to two periods of water deficit separated by an interval of re-watering and recovery. All plants took the same time to wilt during the first drought exposure but Yukon plants took 1 day longer than Shandong plants following the second drought treatment. Following re-watering and turgor recovery, solute potentials of Shandong leaves returned to predrought values while those of Yukon leaves were lower than predrought levels consistent with having undergone osmotic adjustment. Polar metabolites profiled in re-watered plants showed that different metabolites are accumulated by Yukon and Shandong plants recovering from a water deficit with glucose more abundant in Yukon and fructose in Shandong leaves. The drought-responsive expression of dehydrin genes RAB18, ERD1, RD29A and RD22 showed greater changes in transcript abundance in Yukon relative to Shandong leaves during both water deficits and recovery with the greatest difference in expression appearing during the second drought. We propose that the initial exposure of Yukon plants to drought renders them more resilient to water loss during a subsequent water deficit leading to delayed wilting. Yukon plants also established a high leaf water content and increased specific leaf area during the second deficit. Shandong plants undergoing the same treatment regime do not show the same beneficial drought tolerance responses and likely use drought avoidance to cope with water deficits.


Asunto(s)
Brassicaceae/fisiología , Sequías , Adaptación Fisiológica , Brassicaceae/metabolismo , China , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Estrés Fisiológico , Agua , El Yukón
2.
BMC Plant Biol ; 12: 175, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23025749

RESUMEN

BACKGROUND: Thellungiella salsuginea is an important model plant due to its natural tolerance to abiotic stresses including salt, cold, and water deficits. Microarray and metabolite profiling have shown that Thellungiella undergoes stress-responsive changes in transcript and organic solute abundance when grown under controlled environmental conditions. However, few reports assess the capacity of plants to display stress-responsive traits in natural habitats where concurrent stresses are the norm. RESULTS: To determine whether stress-responsive changes observed in cabinet-grown plants are recapitulated in the field, we analyzed leaf transcript and metabolic profiles of Thellungiella growing in its native Yukon habitat during two years of contrasting meteorological conditions. We found 673 genes showing differential expression between field and unstressed, chamber-grown plants. There were comparatively few overlaps between genes expressed under field and cabinet treatment-specific conditions. Only 20 of 99 drought-responsive genes were expressed both in the field during a year of low precipitation and in plants subjected to drought treatments in cabinets. There was also a general pattern of lower abundance among metabolites found in field plants relative to control or stress-treated plants in growth cabinets. Nutrient availability may explain some of the observed differences. For example, proline accumulated to high levels in cold and salt-stressed cabinet-grown plants but proline content was, by comparison, negligible in plants at a saline Yukon field site. We show that proline accumulated in a stress-responsive manner in Thellungiella plants salinized in growth cabinets and in salt-stressed seedlings when nitrogen was provided at 1.0 mM. In seedlings grown on 0.1 mM nitrogen medium, the proline content was low while carbohydrates increased. The relatively higher content of sugar-like compounds in field plants and seedlings on low nitrogen media suggests that Thellungiella shows metabolic plasticity in response to environmental stress and that resource availability can influence the expression of stress tolerance traits under field conditions. CONCLUSION: Comparisons between Thellungiella plants responding to stress in cabinets and in their natural habitats showed differences but also overlap between transcript and metabolite profiles. The traits in common offer potential targets for improving crops that must respond appropriately to multiple, concurrent stresses.


Asunto(s)
Brassicaceae/genética , Metaboloma , Fenotipo , Estrés Fisiológico , Transcriptoma , Brassicaceae/crecimiento & desarrollo , Brassicaceae/metabolismo , Sequías , Ecosistema , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Prolina/metabolismo , Salinidad , Cloruro de Sodio/metabolismo , Suelo/química , El Yukón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA