Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Comput Biol Chem ; 110: 108070, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678726

RESUMEN

Cumulative global prevalence of the emergent monkeypox (MPX) infection in the non-endemic countries has been professed as a global public health predicament. Lack of effective MPX-specific treatments sets the baseline for designing the current study. This research work uncovers the effective use of known antiviral polyphenols against MPX viral infection, and recognises their mode of interaction with the target F13 protein, that plays crucial role in formation of enveloped virions. Herein, we have employed state-of-the-art machine learning based AlphaFold2 to predict the three-dimensional structure of F13 followed by molecular docking and all-atoms molecular dynamics (MD) simulations to investigate the differential mode of F13-polyphenol interactions. Our extensive computational approach identifies six potent polyphenols Rutin, Epicatechingallate, Catechingallate, Quercitrin, Isoquecitrin and Hyperoside exhibiting higher binding affinity towards F13, buried inside a positively charged binding groove. Intermolecular contact analysis of the docked and MD simulated complexes divulges three important residues Asp134, Ser137 and Ser321 that are observed to be involved in ligand binding through hydrogen bonds. Our findings suggest that ligand binding induces minor conformational changes in F13 to affect the conformation of the binding site. Concomitantly, essential dynamics of the six-MD simulated complexes reveals Catechin gallate, a known antiviral agent as a promising polyphenol targeting F13 protein, dominated with a dense network of hydrophobic contacts. However, assessment of biological activities of these polyphenols need to be confirmed through in vitro and in vivo assays, which may pave the way for development of new novel antiviral drugs.


Asunto(s)
Antivirales , Simulación de Dinámica Molecular , Polifenoles , Antivirales/química , Antivirales/farmacología , Polifenoles/química , Polifenoles/farmacología , Catequina/química , Catequina/análogos & derivados , Catequina/farmacología , Simulación del Acoplamiento Molecular
2.
J Infect Public Health ; 17(7): 102470, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38865776

RESUMEN

BACKGROUND: Poxviruses comprise a group of large double-stranded DNA viruses and are known to cause diseases in humans, livestock animals, and other animal species. The Mpox virus (MPXV; formerly Monkeypox), variola virus (VARV), and volepox virus (VPXV) are among the prevalent poxviruses of the Orthopoxviridae genera. The ongoing Mpox infectious disease pandemic caused by the Mpox virus has had a major impact on public health across the globe. To date, only limited repurposed antivirals and vaccines are available for the effective treatment of Mpox and other poxviruses that cause contagious diseases. METHODS: The present study was conducted with the primary goal of formulating multi-epitope vaccines against three evolutionary closed poxviruses i.e., MPXV, VARV, and VPXV using an integrated immunoinformatics and molecular modeling approach. DNA-dependent RNA polymerase (DdRp), a potential vaccine target of poxviruses, has been used to determine immunodominant B and T-cell epitopes followed by interactions analysis with Toll-like receptor 2 at the atomic level. RESULTS: Three multi-epitope vaccine constructs, namely DdRp_MPXV (V1), DdRp_VARV (V2), and DdRp_VPXV (V3) were designed. These vaccine constructs were found to be antigenic, non-allergenic, non-toxic, and soluble with desired physicochemical properties. Protein-protein docking and interaction profiling analysis depicts a strong binding pattern between the targeted immune receptor TLR2 and the structural models of the designed vaccine constructs, and manifested a number of biochemical bonds (hydrogen bonds, salt bridges, and non-bonded contacts). State-of-the-art all-atoms molecular dynamics simulations revealed highly stable interactions of vaccine constructs with TLR2 at the atomic level throughout the simulations on 300 nanoseconds. Additionally, the outcome of the immune simulation analysis suggested that designed vaccines have the potential to induce protective immunity against targeted poxviruses. CONCLUSIONS: Taken together, formulated next-generation polyvalent vaccines were found to have good efficacy against closely related poxviruses (MPXV, VARV, and VPXV) as demonstrated by our extensive immunoinformatics and molecular modeling evaluations; however, further experimental investigations are still needed.


Asunto(s)
Biología Computacional , Epítopos de Linfocito T , Poxviridae , Vacunas Virales , Vacunas Virales/inmunología , Poxviridae/inmunología , Poxviridae/genética , Biología Computacional/métodos , Epítopos de Linfocito T/inmunología , ARN Polimerasas Dirigidas por ADN/inmunología , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Modelos Moleculares , Animales , Humanos , Infecciones por Poxviridae/prevención & control , Infecciones por Poxviridae/inmunología , Infecciones por Poxviridae/virología , Epítopos de Linfocito B/inmunología , Simulación del Acoplamiento Molecular , Inmunoinformática
3.
J Magn Reson ; 362: 107689, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677224

RESUMEN

ß-Lactamases (EC 3.5.2.6) confer resistance against ß-lactam group-containing antibiotics in bacteria and higher eukaryotes, including humans. Pathogenic bacterial resistance against ß-lactam antibiotics is a primary concern for potential therapeutic developments and drug targets. Here, we report putative ß-lactamase activity, sulbactam binding (a ß-lactam analogue) in the low µM affinity range, and site-specific interaction studies of a 14 kDa UV- and dark-inducible protein (abbreviated as UVI31+, a BolA homologue) from Chlamydomonas reinhartii. Intriguingly, the solution NMR structure of UVI31 + bears no resemblance to other known ß-lactamases; however, the sulbactam binding is found at two sites rich in positively charged residues, mainly at the L2 loop regions and the N-terminus. Using NMR spectroscopy, ITC and MD simulations, we map the ligand binding sites in UVI31 + providing atomic-level insights into its ß-lactamase activity. Current study is the first report on ß-lactamase activity of UVI31+, a BolA analogue, from C. reinhartii. Furthermore, our mutation studies reveal that the active site serine-55 is crucial for ß-lactamase activity.


Asunto(s)
Chlamydomonas reinhardtii , beta-Lactamasas , Chlamydomonas reinhardtii/enzimología , beta-Lactamasas/química , beta-Lactamasas/metabolismo , Sitios de Unión , Resonancia Magnética Nuclear Biomolecular/métodos , Sulbactam/química , Sulbactam/farmacología , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Secuencia de Aminoácidos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Unión Proteica
4.
bioRxiv ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38746133

RESUMEN

Aberrant aggregation of α-Synuclein is the pathological hallmark of a set of neurodegenerative diseases termed synucleinopathies. Recent advances in cryo-electron microscopy have led to the structural determination of the first synucleinopathy-derived α-Synuclein fibrils, which contain a non-proteinaceous, "mystery density" at the core of the protofilaments, hypothesized to be highly negatively charged. Guided by previous studies that demonstrated that polyphosphate (polyP), a universally conserved polyanion, significantly accelerates α-Synuclein fibril formation, we conducted blind docking and molecular dynamics simulation experiments to model the polyP binding site in α-Synuclein fibrils. Here we demonstrate that our models uniformly place polyP into the lysine-rich pocket, which coordinates the mystery density in patient-derived fibrils. Subsequent in vitro studies and experiments in cells revealed that substitution of the two critical lysine residues K43 and K45 leads to a loss of all previously reported effects of polyP binding on α-Synuclein, including stimulation of fibril formation, change in filament conformation and stability as well as alleviation of cytotoxicity. In summary, our study demonstrates that polyP fits the unknown electron density present in in vivo α-Synuclein fibrils and suggests that polyP exerts its functions by neutralizing charge repulsion between neighboring lysine residues.

5.
J Biomol Struct Dyn ; : 1-13, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345048

RESUMEN

This study was conducted to test the efficacy of 5-fluorouracil (5-FU) as an anticancer drug against the human pyruvate kinase isozyme M2 (PKM2) using spectroscopic, molecular docking and molecular dynamic simulation studies. PKM2 fluorescence quenching studies in the presence of 5-FU performed at three different temperatures indicates dynamic quenching processes with single-set of binding (n ≈ 1) profile. The biomolecular quenching constants (kq) and the effective binding constants (Kb) obtained are shown to increase with temperature. The calculated enthalpy (ΔH) and entropy changes (ΔS) are estimated to be -118.06 kJ/mol and 146.14 kJ/mol/K respectively, which suggest the possible mode of interaction as electrostatic and hydrogen bonding. Further, these values were used to estimate the free energy changes (ΔG) and that increases with temperature. The negative ΔG values clearly indicates spontaneous binding process that stabilizes the complex formed between 5-FU and PKM2. Far-UV CD spectra of PKM2 in the presence of 5-FU shows decrease in α-helix contents which point towards the destabilization of secondary structure that weakens the biological activity of PKM2. The intrinsic fluorescence study and circular dichroism (CD) spectra showed minor conformational changes of PKM2 in the presence of 5-FU. Additionally, the results obtained from molecular docking and all-atom molecular dynamic simulation study supports the insight of the spectroscopic binding studies, and strengthens the dynamic stability of the complex between 5-FU and PKM2 through H-bonding. This study establishes a paradigm of 5-FU-PKM2 complexation and the efficacy of 5-FU that compromises the biological activity of the targeted PKM2.Communicated by Ramaswamy H. Sarma.

6.
Int J Biol Macromol ; 270(Pt 1): 132030, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704069

RESUMEN

The proviral integration for the Moloney murine leukemia virus (PIM) kinases, belonging to serine/threonine kinase family, have been found to be overexpressed in various types of cancers, such as prostate, breast, colon, endometrial, gastric, and pancreatic cancer. The three isoforms PIM kinases i.e., PIM1, PIM2, and PIM3 share a high degree of sequence and structural similarity and phosphorylate substrates controlling tumorigenic phenotypes like proliferation and cell survival. Targeting short-lived PIM kinases presents an intriguing strategy as in vivo knock-down studies result in non-lethal phenotypes, indicating that clinical inhibition of PIM might have fewer adverse effects. The ATP binding site (hinge region) possesses distinctive attributes, which led to the development of novel small molecule scaffolds that target either one or all three PIM isoforms. Machine learning and structure-based approaches have been at the forefront of developing novel and effective chemical therapeutics against PIM in preclinical and clinical settings, and none have yet received approval for cancer treatment. The stability of PIM isoforms is maintained by PIM kinase activity, which leads to resistance against PIM inhibitors and chemotherapy; thus, to overcome such effects, PIM proteolysis targeting chimeras (PROTACs) are now being developed that specifically degrade PIM proteins. In this review, we recapitulate an overview of the oncogenic functions of PIM kinases, their structure, function, and crucial signaling network in different types of cancer, and the potential of pharmacological small-molecule inhibitors. Further, our comprehensive review also provides valuable insights for developing novel antitumor drugs that specifically target PIM kinases in the future. In conclusion, we provide insights into the benefits of degrading PIM kinases as opposed to blocking their catalytic activity to address the oncogenic potential of PIM kinases.


Asunto(s)
Antineoplásicos , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-pim-1 , Transducción de Señal , Animales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-pim-1/química , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
7.
J Biomol Struct Dyn ; : 1-16, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38149850

RESUMEN

Resistance to azoles and amphotericin B especially in Aspergillus fumigatus is a growing concern towards the treatment of invasive fungal infection. At this critical juncture, intein splicing would be a productive, and innovative target to establish therapies against resistant strains. Intein splicing is the central event for the activation of host protein, essential for the growth and survival of various microorganisms including A. fumigatus. The splicing process is a four-step protease-like nucleophilic cascade. Thus, we hypothesise that protease inhibitors would successfully halt intein splicing and potentially restrict the growth of the aforementioned pathogen. Using Rosetta Fold and molecular dynamics simulations, we modelled Prp8 intein structure; resembling classic intein fold with horse shoe shaped splicing domain. To fully comprehend the active site of Afu Prp8 intein, C1, T62, H65, H818, N819 from intein sequences and S820, the first C-extein residue are selected. Molecular docking shows that two FDA-approved drugs, i.e. Lufotrelvir and Remdesivir triphosphate efficiently interact with Prp8 intein from the assortment of 212 protease inhibitors. MD simulation portrayed that Prp8 undergoes conformational change upon ligand binding, and inferred the molecular recognition and stability of the docked complexes. Per-residue decomposition analysis confirms the importance of F: block R802, V803, and Q807 binding pocket in intein splicing domain towards recognition of inhibitors, along with active site residues through strong hydrogen bonds and hydrophobic contacts. However, in vitro and in vivo assays are required to confirm the inhibitory action on Prp8 intein splicing; which may pave the way for the development of new antifungals for A. fumigatus.Communicated by Ramaswamy H. Sarma.

8.
J Biomol Struct Dyn ; : 1-15, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115191

RESUMEN

The omicron (B.1.19) variant of contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is considered a variant of concern (VOC) due to its increased transmissibility and highly infectious nature. The spike receptor-binding domain (RBD) is a hotspot of mutations and is regarded as a prominent target for screening drug candidates owing to its crucial role in viral entry and immune evasion. To date, no effective therapy or antivirals have been reported; therefore, there is an urgent need for rapid screening of antivirals. An extensive molecular modelling study has been performed with the primary goal to assess the inhibition potential of natural flavonoids as inhibitors against RBD from a manually curated library. Out of 40 natural flavonoids, five natural flavonoids, namely tomentin A (-8.7 kcal/mol), tomentin C (-8.6 kcal/mol), hyperoside (-8.4 kcal/mol), catechin gallate (-8.3 kcal/mol), and corylifol A (-8.2 kcal/mol), have been considered as the top-ranked compounds based on their binding affinity and molecular interaction profiling. The state-of-the-art molecular dynamics (MD) simulations of these top-ranked compounds in complex with RBD exhibited stable dynamics and structural compactness patterns on 200 nanoseconds. Additionally, complexes of these molecules demonstrated favorable free binding energies and affirmed the docking and simulation results. Moreover, the post-simulation validation of these interacted flavonoids using principal component analysis (PCA) revealed stable interaction patterns with RBD. The integrated results suggest that tomentin A, tomentin C, hyperoside, catechin gallate, and corylifol A might be effective against the emerging variants of SARS-CoV-2 and should be further evaluated using in-vitro and in-vivo experiments.Communicated by Ramaswamy H. Sarma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA