Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 25(19): 4266-4281, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27506976

RESUMEN

Charcot-Marie-Tooth 2A (CMT2A) is an inherited peripheral neuropathy caused by mutations in MFN2, which encodes a mitochondrial membrane protein involved in mitochondrial network homeostasis. Because MFN2 is expressed ubiquitously, the reason for selective motor neuron (MN) involvement in CMT2A is unclear. To address this question, we generated MNs from induced pluripotent stem cells (iPSCs) obtained from the patients with CMT2A as an in vitro disease model. CMT2A iPSC-derived MNs (CMT2A-MNs) exhibited a global reduction in mitochondrial content and altered mitochondrial positioning without significant differences in survival and axon elongation. RNA sequencing profiles and protein studies of key components of the apoptotic executioner program (i.e. p53, BAX, caspase 8, cleaved caspase 3, and the anti-apoptotic marker Bcl2) demonstrated that CMT2A-MNs are more resistant to apoptosis than wild-type MNs. Exploring the balance between mitochondrial biogenesis and the regulation of autophagy-lysosome transcription, we observed an increased autophagic flux in CMT2A-MNs that was associated with increased expression of PINK1, PARK2, BNIP3, and a splice variant of BECN1 that was recently demonstrated to be a trigger for mitochondrial autophagic removal. Taken together, these data suggest that the striking reduction in mitochondria in MNs expressing mutant MFN2 is not the result of impaired biogenesis, but more likely the consequence of enhanced mitophagy. Thus, these pathways represent possible novel molecular therapeutic targets for the development of an effective cure for this disease.


Asunto(s)
Apoptosis/genética , Enfermedad de Charcot-Marie-Tooth/genética , GTP Fosfohidrolasas/genética , Proteínas Mitocondriales/genética , Neuronas Motoras/metabolismo , Autofagia/genética , Beclina-1/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , GTP Fosfohidrolasas/biosíntesis , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Potencial de la Membrana Mitocondrial/genética , Proteínas de la Membrana/genética , Proteínas Mitocondriales/biosíntesis , Neuronas Motoras/patología , Proteínas Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Ubiquitina-Proteína Ligasas/genética
3.
Muscle Nerve ; 55(1): 55-68, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27184587

RESUMEN

INTRODUCTION: Limb girdle muscular dystrophies (LGMDs) are characterized by high molecular heterogeneity, clinical overlap, and a paucity of specific biomarkers. Their molecular definition is fundamental for prognostic and therapeutic purposes. METHODS: We created an Italian LGMD registry that included 370 molecularly defined patients. We reviewed detailed retrospective and prospective data and compared each LGMD subtype for differential diagnosis purposes. RESULTS: LGMD types 2A and 2B are the most frequent forms in Italy. The ages at disease onset, clinical progression, and cardiac and respiratory involvement can vary greatly between each LGMD subtype. In a set of extensively studied patients, targeted next-generation sequencing (NGS) identified mutations in 36.5% of cases. CONCLUSION: Detailed clinical characterization combined with muscle tissue analysis is fundamental to guide differential diagnosis and to address molecular tests. NGS is useful for diagnosing forms without specific biomarkers, although, at least in our study cohort, several LGMD disease mechanisms remain to be identified. Muscle Nerve 55: 55-68, 2017.


Asunto(s)
Diagnóstico Diferencial , Distrofia Muscular de Cinturas/diagnóstico , Distrofia Muscular de Cinturas/epidemiología , Adolescente , Adulto , Edad de Inicio , Anciano , Creatina Quinasa/sangre , Femenino , Estudios de Asociación Genética , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/complicaciones , Distrofia Muscular de Cinturas/genética , Sistema de Registros , Trastornos Respiratorios/etiología , Estadísticas no Paramétricas , Adulto Joven
4.
Hum Mol Genet ; 23(8): 2220-31, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24256812

RESUMEN

Identification of mutations at familial loci for amyotrophic lateral sclerosis (ALS) has provided novel insights into the aetiology of this rapidly progressing fatal neurodegenerative disease. However, genome-wide association studies (GWAS) of the more common (∼90%) sporadic form have been less successful with the exception of the replicated locus at 9p21.2. To identify new loci associated with disease susceptibility, we have established the largest association study in ALS to date and undertaken a GWAS meta-analytical study combining 3959 newly genotyped Italian individuals (1982 cases and 1977 controls) collected by SLAGEN (Italian Consortium for the Genetics of ALS) together with samples from Netherlands, USA, UK, Sweden, Belgium, France, Ireland and Italy collected by ALSGEN (the International Consortium on Amyotrophic Lateral Sclerosis Genetics). We analysed a total of 13 225 individuals, 6100 cases and 7125 controls for almost 7 million single-nucleotide polymorphisms (SNPs). We identified a novel locus with genome-wide significance at 17q11.2 (rs34517613 with P = 1.11 × 10(-8); OR 0.82) that was validated when combined with genotype data from a replication cohort (P = 8.62 × 10(-9); OR 0.833) of 4656 individuals. Furthermore, we confirmed the previously reported association at 9p21.2 (rs3849943 with P = 7.69 × 10(-9); OR 1.16). Finally, we estimated the contribution of common variation to heritability of sporadic ALS as ∼12% using a linear mixed model accounting for all SNPs. Our results provide an insight into the genetic structure of sporadic ALS, confirming that common variation contributes to risk and that sufficiently powered studies can identify novel susceptibility loci.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Cromosomas Humanos Par 17/genética , Estudio de Asociación del Genoma Completo , Estudios de Casos y Controles , Humanos , Pronóstico
5.
BMC Neurol ; 15: 172, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26404900

RESUMEN

BACKGROUND: Limb Girdle Muscular Dystrophy (LGMD), caused by defective α-dystroglycan (α-DG) glycosylation, was recently associated with mutations in Isoprenoid synthase domain-containing (ISPD) and GDP-mannose pyrophosphorylase B (GMPPB) genes. The frequency of ISPD and GMPPB gene mutations in the LGMD population is unknown. METHODS: We investigated the contributions of ISPD and GMPPB genes in a cohort of 174 Italian patients with LGMD, including 140 independent probands. Forty-one patients (39 probands) from this cohort had not been genetically diagnosed. The contributions of ISPD and GMPPB were estimated by sequential α-DG immunohistochemistry (IHC) and mutation screening in patients with documented α-DG defect, or by direct DNA sequencing of both genes when muscle tissue was unavailable. RESULTS: We performed α-DG IHC in 27/39 undiagnosed probands: 24 subjects had normal α-DG expression, two had a partial deficiency, and one exhibited a complete absence of signal. Direct sequencing of ISPD and GMPPB revealed two heterozygous ISPD mutations in the individual who lacked α-DG IHC signal: c.836-5 T > G (which led to the deletion of exon 6 and the production of an out-of-frame transcript) and c.676 T > C (p.Tyr226His). This patient presented with sural hypertrophy and tip-toed walking at 5 years, developed moderate proximal weakness, and was fully ambulant at 42 years. The remaining 12/39 probands did not exhibit pathogenic sequence variation in either gene. CONCLUSION: ISPD mutations are a rare cause of LGMD in the Italian population, accounting for less than 1% of the entire cohort studied (FKRP mutations represent 10%), while GMPPB mutations are notably absent in this patient sample. These data suggest that the genetic heterogeneity of LGMD with and without α-DG defects is greater than previously realized.


Asunto(s)
Distrofia Muscular de Cinturas/genética , Nucleotidiltransferasas/genética , Estudios de Cohortes , Humanos , Italia , Mutación , Población Blanca/genética
6.
J Neurol Neurosurg Psychiatry ; 84(2): 183-7, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23138764

RESUMEN

OBJECTIVES: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease mainly involving cortical and spinal motor neurones. Molecular studies have recently identified different mutations in the  ubiquilin-2 (UBQLN2) gene as causative of a familial form of X-linked ALS, 90% penetrant in women. The aim of our study was to analyse the UBQLN2 gene in a large cohort of patients with familial (FALS) and sporadic (SALS) amyotrophic lateral sclerosis, with or without frontotemporal dementia (FTD), and in patients with FTD. METHODS: We analysed the UBQLN2 gene in 819 SALS cases, 226 FALS cases, 53 ALS-FTD patients, and 63 patients with a clinical record of FTD. Molecular analysis of the entire coding sequence was carried out in all FALS and ALS-FTD patients, while SALS and FTD patients were analysed specifically for the genomic region coding for the PXX repeat tract. Healthy controls were 845 anonymous blood donors and were screened for the PXX repeat region only. RESULTS: We found five different variants in the UBQLN2 gene in five unrelated ALS patients. Three variants, including two novel ones, involved a proline residue in the PXX repeat region and were found in three FALS cases. The other two were novel variants, identified in one FALS and one SALS patient. None of these variants was present in controls, while one control carried a new heterozygous variant. CONCLUSIONS: Our data support the role of the UBQLN2 gene in the pathogenesis of FALS, being conversely a rare genetic cause in SALS even when complicated by FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Ciclo Celular/genética , Demencia Frontotemporal/genética , Ubiquitinas/genética , Proteínas Adaptadoras Transductoras de Señales , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/diagnóstico , Proteínas Relacionadas con la Autofagia , Femenino , Demencia Frontotemporal/complicaciones , Humanos , Italia , Masculino , Persona de Mediana Edad , Mutación , Población Blanca/genética
7.
Sci Rep ; 13(1): 3187, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823368

RESUMEN

Repeat expansions in genes other than C9orf72 and ATXN2 have been recently associated with Amyotrophic Lateral Sclerosis (ALS). Indeed, an abnormal number of GGC repeats in NOTCH2NLC has been recently reported in 0.7% of sporadic ALS patients from mainland China. This finding was not confirmed in an ALS cohort of subjects from Taiwan. As the involvement of expanded NOTCH2NLC alleles in ALS is debated, we addressed this point by evaluating NOTCH2NLC repeat expansions in an Italian cohort of ALS patients. A screening analysis of NOTCH2NLC GGC repeats was performed by repeat-primed polymerase chain reaction (RP-PCR) in a cohort of 385 probable/definite ALS Italian patients. Mean age at onset was 60.5 years (SD 13.7), and 60.9% were males. Sporadic cases were 357 (92.7%), and most patients had a spinal onset (71.8%). None of our patients showed the typical sawtooth tail pattern on RP-PCR, thus excluding abnormal repeat expansion in NOTCH2NLC. Overall, we suggest that NOTCH2NLC expanded alleles might be absent or at least extremely rare in ALS Italian patients. Further investigations in larger cohorts with different ethnic backgrounds are required to support the involvement of NOTCH2NLC in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Péptidos y Proteínas de Señalización Intercelular , Proteínas del Tejido Nervioso , Femenino , Humanos , Masculino , Persona de Mediana Edad , Alelos , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , China , Italia , Taiwán , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas del Tejido Nervioso/genética
8.
Front Neurol ; 14: 1169689, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37265463

RESUMEN

Introduction: SOD1 was the first gene associated with both familial and sporadic forms of amyotrophic lateral sclerosis (ALS) and is the second most mutated gene in Caucasian ALS patients. Given their high clinical and molecular heterogeneity, a detailed characterization of SOD1-ALS patients could improve knowledge about the natural history of this disease. Here, the authors aimed to provide a clinical and molecular description of a monocentric cohort of SOD1-ALS patients. Methods: Amyotrophic lateral sclerosis (ALS) patients referring to the neurology unit of our center between 2008 and 2021 were clinically assessed and underwent molecular testing for SOD1. Segregation studies in available family members and in silico analysis were performed to sustain the pathogenicity of the identified SOD1 variants. Results: Among the 576 patients in our cohort, we identified 19 individuals harboring a mutation in SOD1 (3.3%), including 15 (78.9%) with a familial and four (21.1%) with a sporadic form. The spinal onset of the disease was observed in all patients, and survival was extremely variable, ranging from 8 months to over 30 years. Twelve different SOD1 missense variants were identified in our cohort, including one novel mutation (p.Pro67Leu). Discussion: In the present series, we provided the first description of an Italian monocentric cohort of SOD1-ALS patients, and we expanded the repertoire of SOD1 mutations. Our cohort presents several remarkable features, including variable expressivity in the same family, atypical presentation (ataxia, cognitive impairment, and other extra-motor symptoms), and different modes of inheritance of a given mutation in the same family. Given the recent authorization of SOD1-directed antisense oligonucleotide for use in SOD1-ALS patients, we recommend prompt screening for SOD1 mutations in novel ALS patients with familiar or sporadic presentations.

9.
Neurol Genet ; 8(1): e645, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34926808

RESUMEN

OBJECTIVES: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterized by degeneration of motor neurons determining progressive muscular atrophy, weakness, and death from respiratory failure. METHODS: Here, we report clinical and molecular findings of a novel Iranian family affected with a severe form of early-onset familial ALS. RESULTS: Three siblings born to consanguineous parents developed a form of ALS characterized by early-onset lower limb involvement and a fast progression, proving fatal at age 16 years for 1 of them. Molecular analysis of the SOD1 gene revealed the homozygous substitution c.434T>C in exon 5 resulting in the amino acid change p.Leu144Ser (L144S), previously reported as a dominant variant. Both parents were heterozygous carriers. The probands' mother recently developed a late-onset ALS with predominant upper motor neuron involvement. DISCUSSION: This report adds p.L144S to the short list of homozygous SOD1 variants and suggests that the development of an earlier-onset and/or faster disease progression can occur when 2 mutated alleles are present.

10.
Ann Clin Transl Neurol ; 9(11): 1820-1825, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36285345

RESUMEN

HTT full-penetrance pathogenic repeat expansions, the genetic cause of Huntington's disease (HD), have been recently reported in a minority of frontotemporal dementia/amyotrophic lateral sclerosis (ALS) patients (0.13%). We analyzed HTT CAG repeats in an Italian cohort of ALS patients (n = 467) by repeat-primed polymerase chain reaction. One patient harbored two expanded alleles in the HTT gene (42 and 37 CAG repeats). The absence of HD typical symptoms and the clinical picture consistent with ALS, corroborated by the diagnostic assessment, apparently excluded a misdiagnosis of HD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedad de Huntington , Humanos , Esclerosis Amiotrófica Lateral/genética , Enfermedad de Huntington/diagnóstico , Demencia Frontotemporal/genética , Alelos , Reacción en Cadena de la Polimerasa , Proteína Huntingtina/genética
11.
Sci Rep ; 12(1): 6181, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418194

RESUMEN

Charcot-Marie-Tooth disease type 2A (CMT2A) is a rare inherited axonal neuropathy caused by mutations in MFN2 gene, which encodes Mitofusin 2, a transmembrane protein of the outer mitochondrial membrane. We performed a cross-sectional analysis on thirteen patients carrying mutations in MFN2, from ten families, describing their clinical and genetic characteristics. Evaluated patients presented a variable age of onset and a wide phenotypic spectrum, with most patients presenting a severe phenotype. A novel heterozygous missense variant was detected, p.K357E. It is located at a highly conserved position and predicted as pathogenic by in silico tools. At a clinical level, the p.K357E carrier shows a severe sensorimotor axonal neuropathy. In conclusion, our work expands the genetic spectrum of CMT2A, disclosing a novel mutation and its related clinical effect, and provides a detailed description of the clinical features of a cohort of patients with MFN2 mutations. Obtaining a precise genetic diagnosis in affected families is crucial both for family planning and prenatal diagnosis, and in a therapeutic perspective, as we are entering the era of personalized therapy for genetic diseases.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , GTP Fosfohidrolasas , Proteínas Mitocondriales , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , Estudios Transversales , GTP Fosfohidrolasas/genética , Humanos , Proteínas Mitocondriales/genética , Fenotipo
12.
J Clin Invest ; 118(10): 3316-30, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18769634

RESUMEN

Spinal muscular atrophy (SMA), a motor neuron disease (MND) and one of the most common genetic causes of infant mortality, currently has no cure. Patients with SMA exhibit muscle weakness and hypotonia. Stem cell transplantation is a potential therapeutic strategy for SMA and other MNDs. In this study, we isolated spinal cord neural stem cells (NSCs) from mice expressing green fluorescent protein only in motor neurons and assessed their therapeutic effects on the phenotype of SMA mice. Intrathecally grafted NSCs migrated into the parenchyma and generated a small proportion of motor neurons. Treated SMA mice exhibited improved neuromuscular function, increased life span, and improved motor unit pathology. Global gene expression analysis of laser-capture-microdissected motor neurons from treated mice showed that the major effect of NSC transplantation was modification of the SMA phenotype toward the wild-type pattern, including changes in RNA metabolism proteins, cell cycle proteins, and actin-binding proteins. NSC transplantation positively affected the SMA disease phenotype, indicating that transplantation of NSCs may be a possible treatment for SMA.


Asunto(s)
Modelos Animales de Enfermedad , Células Madre Fetales/trasplante , Atrofia Muscular Espinal/cirugía , Neuronas/citología , Trasplante de Células Madre , Animales , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/mortalidad , Neuronas/metabolismo , Fenotipo , Médula Espinal/citología , Análisis de Supervivencia , Pérdida de Peso
13.
BMC Med Genet ; 12: 37, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21396098

RESUMEN

BACKGROUND: Duchenne and Becker Muscular dystrophies (DMD/BMD) are allelic disorders caused by mutations in the dystrophin gene, which encodes a sarcolemmal protein responsible for muscle integrity. Deletions and duplications account for approximately 75% of mutations in DMD and 85% in BMD. The implementation of techniques allowing complete gene sequencing has focused attention on small point mutations and other mechanisms underlying complex rearrangements. METHODS: We selected 47 patients (41 families; 35 DMD, 6 BMD) without deletions and duplications in DMD gene (excluded by multiplex ligation-dependent probe amplification and multiplex polymerase chain reaction analysis). This cohort was investigated by systematic direct sequence analysis to study sequence variation. We focused our attention on rare mutational events which were further studied through transcript analysis. RESULTS: We identified 40 different nucleotide alterations in DMD gene and their clinical correlates; altogether, 16 mutations were novel. DMD probands carried 9 microinsertions/microdeletions, 19 nonsense mutations, and 7 splice-site mutations. BMD patients carried 2 nonsense mutations, 2 splice-site mutations, 1 missense substitution, and 1 single base insertion. The most frequent stop codon was TGA (n=10 patients), followed by TAG (n=7) and TAA (n=4). We also analyzed the molecular mechanisms of five rare mutational events. They are two frame-shifting mutations in the DMD gene 3'end in BMD and three novel splicing defects: IVS42: c.6118-3C>A, which causes a leaky splice-site; c.9560A>G, which determines a cryptic splice-site activation and c.9564-426 T>G, which creates pseudoexon retention within IVS65. CONCLUSION: The analysis of our patients' sample, carrying point mutations or complex rearrangements in DMD gene, contributes to the knowledge on phenotypic correlations in dystrophinopatic patients and can provide a better understanding of pre-mRNA maturation defects and dystrophin functional domains. These data can have a prognostic relevance and can be useful in directing new therapeutic approaches, which rely on a precise definition of the genetic defects as well as their molecular consequences.


Asunto(s)
Distrofina/genética , Distrofia Muscular de Duchenne/genética , Adolescente , Adulto , Alelos , Empalme Alternativo , Niño , Preescolar , Codón sin Sentido , Codón de Terminación , Estudios de Cohortes , Mutación del Sistema de Lectura , Humanos , Persona de Mediana Edad , Distrofia Muscular de Duchenne/diagnóstico , Mutagénesis Insercional , Mutación Missense , Fenotipo , Análisis de Secuencia de ADN
15.
J Med Genet ; 47(3): 190-4, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19861302

RESUMEN

BACKGROUND: Mutations in the FUS gene have recently been discovered to be a major cause of familial amyotrophic lateral sclerosis (FALS). OBJECTIVE: To determine the identity and frequency of FUS gene mutations in a large cohort of Italian patients enriched in sporadic cases (SALS). METHODS: Exons 5, 6, 14 and 15 of the FUS gene were screened for mutations in 1009 patients (45 FALS and 964 SALS). The genetic analysis was extended to the entire coding sequence of FUS in all the FALS and 293 of the SALS patients. RESULTS: Seven missense mutations (p.G191S, p.R216C, p.G225V, p.G230C, p.R234C, p.G507D and p.R521C) were identified in nine patients (seven SALS and two FALS), and none in 500 healthy Italian controls. All mutations are novel except for the p.R521C mutation identified in one SALS and one FALS case. Both patients showed a similar unusual presentation, with proximal, mostly symmetrical, upper limb weakness, with neck and axial involvement. With the exception of p.G507D and p.R521C, the mutations identified in SALS patients are all localised in the glycine-rich region encoded by exon 6. In addition, eight different in-frame deletions in two polyglycine motifs were detected, the frequency of which was not significantly different in patients and controls. CONCLUSIONS: The results show that FUS missense mutations are present in 0.7% of Italian SALS cases, and confirm the previous mutational frequency reported in FALS (4.4%). An unusual proximal and axial clinical presentation seems to be associated with the presence of the p.R521C mutation.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Mutación Missense , Proteína FUS de Unión a ARN/genética , Adulto , Anciano , Estudios de Casos y Controles , Análisis Mutacional de ADN , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos , Italia , Masculino , Persona de Mediana Edad , Mutación Missense/fisiología
16.
J Neurosci ; 29(38): 11761-71, 2009 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-19776263

RESUMEN

Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a fatal form of infantile motoneuron disease. There is currently no effective treatment, although motor neuron replacement is a possible therapeutic strategy. We transplanted purified motor neurons into the spinal cord of nmd mice, an animal model of SMARD1. We also administered pharmacological treatment targeting the induction of axonal growth toward skeletal muscle target. At the end stage of the disease, donor-derived motor neurons were detected in the nmd anterior horns, extended axons into the ventral roots, and formed new neuromuscular junctions. These data correlated with improved neuromuscular function and increased life spans. The neuroprotective effect was associated with a reduction in proinflammatory molecules in treated spinal cords. This is the first report that functional restoration of motor units with transplanted motoneurons is feasible in an animal model of a human motoneuron disease, opening up new possibilities for therapeutic intervention.


Asunto(s)
Neuronas Motoras/trasplante , Médula Espinal/cirugía , Atrofias Musculares Espinales de la Infancia/cirugía , Animales , Axones/efectos de los fármacos , Axones/fisiología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Longevidad/efectos de los fármacos , Longevidad/fisiología , Ratones , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/fisiología , Neurogénesis , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/fisiología , Fármacos Neuroprotectores/uso terapéutico , Fenotipo , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiología , Atrofias Musculares Espinales de la Infancia/tratamiento farmacológico , Células Madre/fisiología
17.
Amyotroph Lateral Scler ; 11(1-2): 122-4, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19707910

RESUMEN

The aim of the present study was to investigate the possible contribution of three common functional polymorphisms in the DNA repair protein X-ray repair cross-complementing group 1 (XRCC1), namely Arg194Trp (rs1799782), Arg280His (rs25489) and Arg399Gln (rs25487), to sporadic amyotrophic lateral sclerosis (SALS). We genotyped 206 Italian SALS patients and 203 matched controls for XRCC1 Arg194Trp, Arg280His and Arg399Gln polymorphisms by means of PCR/RFLP technique, searching for association between any of the studied polymorphisms and disease risk, age and site of onset. We observed a statistically significant difference in XRCC1 Gln399 allele frequencies between SALS cases and controls (0.39/0.28; p=0.001). The present study suggests that the XRCC1 Arg399Gln polymorphism might contribute to SALS risk.


Asunto(s)
Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Polimorfismo de Longitud del Fragmento de Restricción , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/epidemiología , Genotipo , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Factores de Riesgo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
18.
Nucleic Acids Res ; 36(18): 5872-81, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18796524

RESUMEN

Ever increasing evidence has been provided on the accumulation of mutations in the mitochondrial DNA (mtDNA) during the aging process. However, the lack of direct functional consequences of the mutant mtDNA load on the mitochondria-dependent cell metabolism has raised many questions on the physiological importance of the age-related mtDNA variations. In the present work, we have analyzed the bioenergetic properties associated with the age-related T414G mutation of the mtDNA control region in transmitochondrial cybrids. The results show that the T414G mutation does not cause per se any detectable bioenergetic change. Moreover, three mtDNA mutations clustered in the 16S ribosomal RNA gene cosegregated together with the T414G in the same cybrid cell line. Two of them, namely T1843C and A1940G, are novel and associate with a negative bioenergetic phenotype. The results are discussed in the more general context of the complex heterogeneity and the dramatic instability of the mitochondrial genome during cell culture of transmitochondrial cybrids.


Asunto(s)
Envejecimiento/genética , Genes de ARNr , Mutación Puntual , ARN Ribosómico 16S/genética , ARN/genética , Secuencia de Bases , Línea Celular , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Metabolismo Energético , Humanos , Células Híbridas , Mitocondrias/enzimología , Mitocondrias/metabolismo , Datos de Secuencia Molecular , ARN/química , ARN Mitocondrial , ARN Ribosómico 16S/química
19.
Acta Myol ; 39(2): 67-82, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32904964

RESUMEN

Mutations in LAMA2 gene, encoding merosin, are generally responsible of a severe congenital-onset muscular dystrophy (CMD type 1A) characterized by severe weakness, merosin absence at muscle analysis and white matter alterations at brain Magnetic Resonance Imaging (MRI). Recently, LAMA2 mutations have been acknowledged as responsible of LGMD R23, despite only few cases with slowly progressive adult-onset and partial merosin deficiency have been reported. We describe 5 independent Italian subjects presenting with progressive limb girdle muscular weakness, brain white matter abnormalities, merosin deficiency and LAMA2 gene mutations. We detected 7 different mutations, 6 of which are new. All patients showed normal psicomotor development and slowly progressive weakness with onset spanning from childhood to forties. Creatin-kinase levels were moderately elevated. One patient showed dilated cardiomyopathy. Muscle MRI allowed to evaluate the degree and pattern of muscular involvement in all patients. Brain MRI was fundamental in order to address and/or support the molecular diagnosis, showing typical widespread white matter hyperintensity in T2-weighted sequences. Interestingly these alterations were associated with central nervous system involvement in 3 patients who presented epilepsy and migraine. Muscle biopsy commonly but not necessarily revealed dystrophic features. Western-blot was usually more accurate than immunohystochemical analysis in detecting merosin deficiency. The description of these cases further enlarges the clinical spectrum of LAMA2-related disorders. Moreover, it supports the inclusion of LGMD R23 in the new classification of LGMD. The central nervous system involvement was fundamental to address the diagnosis and should be always included in the diagnostic work-up of undiagnosed LGMD.


Asunto(s)
Laminina/genética , Distrofia Muscular de Cinturas/diagnóstico , Distrofia Muscular de Cinturas/genética , Mutación/genética , Adulto , Anciano , Femenino , Humanos , Italia , Masculino , Persona de Mediana Edad , Distrofia Muscular de Cinturas/complicaciones , Linaje
20.
J Neurol Sci ; 276(1-2): 170-4, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19000626

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative motor neuron disorder. Mutations in Cu,Zn superoxide dismutase (SOD1) cause approximately 20% of familial ALS. One of the possible mechanisms whereby they induce disease is mitochondrial dysfunction in motor neurons. Here we describe a patient with ALS and muscle mitochondrial oxidative defect associated with a novel SOD1 mutation. Direct sequencing of SOD1 gene revealed a heterozygous mutation in codon 22 substituting a highly conserved amino acid, from glutamine to arginine (Q22R). Muscle biopsy showed a neurogenic pattern associated with cytochrome c oxidase (COX) deficiency in several muscle fibers. Western blot analysis demonstrated a reduction in SOD1 content in the cytoplasmic and mitochondrial fractions. These results suggest that a minute quantity of mutant SOD1 protein contributes to a mitochondrial toxicity also in muscle tissue.


Asunto(s)
Esclerosis Amiotrófica Lateral , Predisposición Genética a la Enfermedad , Mitocondrias Musculares/patología , Enfermedades Mitocondriales/etiología , Mutación/genética , Superóxido Dismutasa/genética , Adulto , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Arginina/genética , Citocromos c/metabolismo , Análisis Mutacional de ADN , Salud de la Familia , Ligamiento Genético/fisiología , Ácido Glutámico/genética , Humanos , Masculino , Mitocondrias Musculares/ultraestructura , Superóxido Dismutasa-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA