Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 149(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34878101

RESUMEN

The canonical Wnt/ß-catenin pathway governs a multitude of developmental processes in various cell lineages, including the melanocyte lineage. Indeed, ß-catenin regulates transcription of Mitf-M, the master regulator of this lineage. The first wave of melanocytes to colonize the skin is directly derived from neural crest cells, whereas the second wave of melanocytes is derived from Schwann cell precursors (SCPs). We investigated the influence of ß-catenin in the development of melanocytes of the first and second waves by generating mice expressing a constitutively active form of ß-catenin in cells expressing tyrosinase. Constitutive activation of ß-catenin did not affect the development of truncal melanoblasts but led to marked hyperpigmentation of the paws. By activating ß-catenin at various stages of development (E8.5-E11.5), we showed that the activation of ß-catenin in bipotent SCPs favored melanoblast specification at the expense of Schwann cells in the limbs within a specific temporal window. Furthermore, in vitro hyperactivation of the Wnt/ß-catenin pathway, which is required for melanocyte development, induces activation of Mitf-M, in turn repressing FoxD3 expression. In conclusion, ß-catenin overexpression promotes SCP cell fate decisions towards the melanocyte lineage.


Asunto(s)
Diferenciación Celular , Melanocitos/metabolismo , Células de Schwann/citología , beta Catenina/metabolismo , Animales , Línea Celular Tumoral , Linaje de la Célula , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Melanocitos/citología , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Estabilidad Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Células de Schwann/metabolismo , Vía de Señalización Wnt , beta Catenina/genética
2.
Exp Dermatol ; 28(6): 662-666, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30536790

RESUMEN

Vitiligo is a chronic skin disease characterized by the appearance of zones of depigmentation. It is mostly described as an autoimmune disease in which the immune system destroys the melanocytes. Consistent with this origin, genetic studies have implicated genes encoding proteins mediating the immune response targeting melanocytes in the aetiology of this disease, together with proteins specific to these cells. However, the destruction of melanocytes by the immune system is neither global nor complete, because the patients do not display total depigmentation. The etiopathology of vitiligo is clearly complex and cannot be simply reduced to an autoimmune reaction directed against pigmented cells. Intrinsic changes have been observed in the melanocytes, keratinocytes and dermal cells of vitiligo patients. Identification of the molecular and cellular changes occurring in normally pigmented skin in vitiligo patients, and an understanding of these changes, is essential to improve the definition of trigger events for this disease, with a view to developing treatments with long-term efficacy. This review focuses on the early events identified to date in the non-lesional regions of the skin in vitiligo patients and discusses the process of repigmentation from melanocyte stem cells.


Asunto(s)
Melanocitos/inmunología , Vitíligo/inmunología , Apoptosis , Enfermedades Autoinmunes/inmunología , Adhesión Celular , Humanos , Melanocitos/citología , Piel/patología , Células Madre/citología , Células Madre/inmunología
3.
Development ; 138(18): 3943-54, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21862558

RESUMEN

We aim to evaluate environmental and genetic effects on the expansion/proliferation of committed single cells during embryonic development, using melanoblasts as a paradigm to model this phenomenon. Melanoblasts are a specific type of cell that display extensive cellular proliferation during development. However, the events controlling melanoblast expansion are still poorly understood due to insufficient knowledge concerning their number and distribution in the various skin compartments. We show that melanoblast expansion is tightly controlled both spatially and temporally, with little variation between embryos. We established a mathematical model reflecting the main cellular mechanisms involved in melanoblast expansion, including proliferation and migration from the dermis to epidermis. In association with biological information, the model allows the calculation of doubling times for melanoblasts, revealing that dermal and epidermal melanoblasts have short but different doubling times. Moreover, the number of trunk founder melanoblasts at E8.5 was estimated to be 16, a population impossible to count by classical biological approaches. We also assessed the importance of the genetic background by studying gain- and loss-of-function ß-catenin mutants in the melanocyte lineage. We found that any alteration of ß-catenin activity, whether positive or negative, reduced both dermal and epidermal melanoblast proliferation. Finally, we determined that the pool of dermal melanoblasts remains constant in wild-type and mutant embryos during development, implying that specific control mechanisms associated with cell division ensure half of the cells at each cell division to migrate from the dermis to the epidermis. Modeling melanoblast expansion revealed novel links between cell division, cell localization within the embryo and appropriate feedback control through ß-catenin.


Asunto(s)
Diferenciación Celular , Crecimiento y Desarrollo/fisiología , Melanocitos/fisiología , Modelos Biológicos , Modelos Teóricos , Animales , Animales Recién Nacidos , Proliferación Celular , Células Cultivadas , Dermis/citología , Dermis/embriología , Embrión de Mamíferos , Células Epidérmicas , Epidermis/embriología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
4.
Cell Mol Life Sci ; 70(6): 1067-79, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22915137

RESUMEN

Melanoblasts are a particular type of cell that displays extensive cellular proliferation during development to contribute to the skin. There are only a few melanoblast founders, initially located just dorsal to the neural tube, and they sequentially colonize the dermis, epidermis, and hair follicles. In each compartment, melanoblasts are exposed to a wide variety of developmental cues that regulate their expansion. The colonization of the dermis and epidermis by melanoblasts involves substantial proliferation to generate thousands of cells or more from a few founders within a week of development. This review addresses the cellular and molecular events occurring during melanoblast development. We focus on intrinsic and extrinsic factors that control melanoblast proliferation. We also present a robust mathematical model for estimating the doubling-time of dermal and epidermal melanoblasts for all coat color phenotypes from black to white.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular , Melanocitos/citología , Melanocitos/fisiología , Modelos Biológicos , Pigmentación de la Piel/fisiología , Piel/citología , Movimiento Celular , Humanos , Cresta Neural/citología , Cresta Neural/embriología , Transducción de Señal/fisiología
5.
J Invest Dermatol ; 144(3): 601-611, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37739336

RESUMEN

Premature hair graying occurs owing to the depletion of melanocyte stem cells in the hair follicle, which can be accelerated by stress caused by genetic or environmental factors. However, the connection between stress and melanocyte stem cell loss is not fully understood. MicroRNAs are molecules that control gene expression by regulating mRNA stability and translation and are produced by the enzyme Dicer, which is repressed under stress. In this study, using 2 mouse genetic models and human and mouse cell lines, we found that the inactivation of Dicer in melanocytes leads to misplacement of these cells within the hair follicle, resulting in a lack of melanin transfer to keratinocytes in the growing hair and the exhaustion of the melanocyte stem cell pool. We also show that miR-92b, which regulates ItgaV mRNA and protein levels, plays a role in altering melanocyte migration. Overall, our findings suggest that the Dicer-miR92b-ItgaV pathway serves as a major signaling pathway linking stress to premature hair greying.


Asunto(s)
Color del Cabello , Melanocitos , Ratones , Humanos , Animales , Color del Cabello/genética , Melanocitos/metabolismo , Melaninas/metabolismo , Cabello , Folículo Piloso
6.
J Invest Dermatol ; 143(4): 538-544.e2, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36958885

RESUMEN

The establishment of consistent genetically modified mouse melanoma models and cell lines is of paramount importance for prevention and treatment. In this study, we review the different mouse melanoma cell lines that have been established. After careful molecular characterization of the established mouse melanoma cell lines, modification of the genome, microenvironment, or even the environment using appropriate in cellulo and in vivo assays may reveal novel genetic and nongenetic changes. These murine melanoma cell lines with defined genetic mutations allow the testing of innovative therapies based on chemistry, physics, and biology using alternative methods. In addition to the fundamental aspects, these results are important for humans because of the relevance of these murine melanoma cell lines to human disease.


Asunto(s)
Melanoma , Humanos , Ratones , Animales , Línea Celular Tumoral , Melanoma/genética , Modelos Animales de Enfermedad , Microambiente Tumoral/genética
7.
Anaesth Crit Care Pain Med ; 42(4): 101262, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37290697

RESUMEN

OBJECTIVE: To provide guidelines to define the place of human factors in the management of critical situations in anaesthesia and critical care. DESIGN: A committee of nineteen experts from the SFAR and GFHS learned societies was set up. A policy of declaration of links of interest was applied and respected throughout the guideline-producing process. Likewise, the committee did not benefit from any funding from a company marketing a health product (drug or medical device). The committee followed the GRADE® method (Grading of Recommendations Assessment, Development and Evaluation) to assess the quality of the evidence on which the recommendations were based. METHODS: We aimed to formulate recommendations according to the GRADE® methodology for four different fields: 1/ communication, 2/ organisation, 3/ working environment and 4/ training. Each question was formulated according to the PICO format (Patients, Intervention, Comparison, Outcome). The literature review and recommendations were formulated according to the GRADE® methodology. RESULTS: The experts' synthesis work and application of the GRADE® method resulted in 21 recommendations. Since the GRADE® method could not be applied in its entirety to all the questions, the guidelines used the SFAR "Recommendations for Professional Practice" A means of secured communication (RPP) format and the recommendations were formulated as expert opinions. CONCLUSION: Based on strong agreement between experts, we were able to produce 21 recommendations to guide human factors in critical situations.


Asunto(s)
Anestesia , Anestesiología , Humanos , Cuidados Críticos
8.
Cancers (Basel) ; 14(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35158973

RESUMEN

G-protein-coupled receptors (GPCRs) serve prominent roles in melanocyte lineage physiology, with an impact at all stages of development, as well as on mature melanocyte functions. GPCR ligands are present in the skin and regulate melanocyte homeostasis, including pigmentation. The role of GPCRs in the regulation of pigmentation and, consequently, protection against external aggression, such as ultraviolet radiation, has long been established. However, evidence of new functions of GPCRs directly in melanomagenesis has been highlighted in recent years. GPCRs are coupled, through their intracellular domains, to heterotrimeric G-proteins, which induce cellular signaling through various pathways. Such signaling modulates numerous essential cellular processes that occur during melanomagenesis, including proliferation and migration. GPCR-associated signaling in melanoma can be activated by the binding of paracrine factors to their receptors or directly by activating mutations. In this review, we present melanoma-associated alterations of GPCRs and their downstream signaling and discuss the various preclinical models used to evaluate new therapeutic approaches against GPCR activity in melanoma. Recent striking advances in our understanding of the structure, function, and regulation of GPCRs will undoubtedly broaden melanoma treatment options in the future.

9.
J Invest Dermatol ; 142(9): 2488-2498.e8, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35150661

RESUMEN

Obesity is a recognized factor for increased risk and poor prognosis of many cancers, including melanoma. In this study, using genetically engineered mouse models of melanoma (NrasQ61K transgenic expression, associated or not with Cdkn2a heterozygous deletion), we show that obesity increases melanoma initiation and progression by supporting tumor growth and metastasis, thereby reducing survival. This effect is associated with a decrease in p16INK4A expression in tumors. Mechanistically, adipocytes downregulate p16INK4A in melanoma cells through ß-catenin-dependent regulation, which increases cell motility. Furthermore, ß-catenin is directly transferred from adipocytes to melanoma cells in extracellular vesicles, thus increasing its level and activity, which represses CDKN2A transcription. Adipocytes from individuals with obesity have a stronger effect than those from lean individuals, mainly owing to an increase in the number of vesicles secreted, thus increasing the amount of ß-catenin delivered to melanoma cells and, consequently, amplifying their effect. In conclusion, in this study, we reveal that adipocyte extracellular vesicles control p16INK4A expression in melanoma, which promotes tumor progression. This work expands our understanding of the cooperation between adipocytes and tumors, particularly in obesity.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina , Vesículas Extracelulares , Melanoma , Obesidad , Adipocitos/metabolismo , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Vesículas Extracelulares/metabolismo , Melanoma/genética , Melanoma/metabolismo , Ratones , Obesidad/genética , Obesidad/metabolismo , beta Catenina/metabolismo
10.
J Cell Biol ; 173(3): 333-9, 2006 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-16651378

RESUMEN

Melanoblasts (Mbs) are thought to be strictly regulated by cell-cell interactions with epidermal keratinocytes, although the precise molecular mechanism of the regulation has been elusive. Notch signaling, whose activation is mediated by cell-cell interactions, is implicated in a broad range of developmental processes. We demonstrate the vital role of Notch signaling in the maintenance of Mbs, as well as melanocyte stem cells (MSCs). Conditional ablation of Notch signaling in the melanocyte lineage leads to a severe defect in hair pigmentation, followed by intensive hair graying. The defect is caused by a dramatic elimination of Mbs and MSCs. Furthermore, targeted overexpression of Hes1 is sufficient to protect Mbs from the elimination by apoptosis. Thus, these data provide evidence that Notch signaling, acting through Hes1, plays a crucial role in the survival of immature Mbs by preventing initiation of apoptosis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Proteínas de Homeodominio/fisiología , Melanocitos/citología , Receptores Notch/fisiología , Transducción de Señal/fisiología , Células Madre/citología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Ciclo Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Dipéptidos/farmacología , Inhibidores Enzimáticos/farmacología , Células Epidérmicas , Epidermis/embriología , Epidermis/metabolismo , Expresión Génica/genética , Color del Cabello/genética , Proteínas de Homeodominio/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Oxidorreductasas Intramoleculares/metabolismo , Proteína Jagged-2 , Melanocitos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Ratones Transgénicos , Receptor Notch1/metabolismo , Células Madre/metabolismo , Factor de Transcripción HES-1
11.
J Theor Biol ; 276(1): 86-98, 2011 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-21310162

RESUMEN

In this paper, we are looking for mathematical modeling of mouse embryonic melanoblast proliferation dynamics, taking into account, the expression level of ß-catenin. This protein plays an important role into the whole signal pathway process. Different assumptions on some unobservable features lead to different candidate models. From real data measured, from biological experiments and from a priori biological knowledge, it was able to validate or invalidate some of the candidate models. Data assimilation and parameter identification allowed us to derive a mathematical model that is in very good agreement with biological data. As a result, the produced model can give tracks for biologists into their biological investigations and experimental evidence. Another interest is the use of this model for robust hidden parameter identification like double times or number of founder melanoblasts.


Asunto(s)
Desarrollo Embrionario , Melanocitos/citología , Modelos Biológicos , Animales , Calibración , Recuento de Células , Proliferación Celular , Dermis/citología , Ratones , Ratones Mutantes , Reproducibilidad de los Resultados , Factores de Tiempo
12.
Cancers (Basel) ; 13(6)2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33804655

RESUMEN

PURPOSE: To assess the efficiency of targeted radionuclide therapy (TRT), alone or in combination with MEK inhibitors (MEKi), in melanomas harboring constitutive MAPK/ERK activation responsible for tumor radioresistance. METHODS: For TRT, we used a melanin radiotracer ([131I]ICF01012) currently in phase 1 clinical trial (NCT03784625). TRT alone or combined with MEKi was evaluated in three-dimensional melanoma spheroid models of human BRAFV600E SK-MEL-3, murine NRASQ61K 1007, and WT B16F10 melanomas. TRT in vivo biodistribution, dosimetry, efficiency, and molecular mechanisms were studied using the C57BL/6J-NRASQ61K 1007 syngeneic model. RESULTS: TRT cooperated with MEKi to increase apoptosis in both BRAF- and NRAS-mutant spheroids. NRASQ61K spheroids were highly radiosensitive towards [131I]ICF01012-TRT. In mice bearing NRASQ61K 1007 melanoma, [131I]ICF01012 induced a significant extended survival (92 vs. 44 days, p < 0.0001), associated with a 93-Gy tumor deposit, and reduced lymph-node metastases. Comparative transcriptomic analyses confirmed a decrease in mitosis, proliferation, and metastasis signatures in TRT-treated vs. control tumors and suggest that TRT acts through an increase in oxidation and inflammation and P53 activation. CONCLUSION: Our data suggest that [131I]ICF01012-TRT and MEKi combination could be of benefit for advanced pigmented BRAF-mutant melanoma care and that [131I]ICF01012 alone could constitute a new potential NRAS-mutant melanoma treatment.

13.
Nat Commun ; 12(1): 3707, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140478

RESUMEN

While the major drivers of melanoma initiation, including activation of NRAS/BRAF and loss of PTEN or CDKN2A, have been identified, the role of key transcription factors that impose altered transcriptional states in response to deregulated signaling is not well understood. The POU domain transcription factor BRN2 is a key regulator of melanoma invasion, yet its role in melanoma initiation remains unknown. Here, in a BrafV600E PtenF/+ context, we show that BRN2 haplo-insufficiency promotes melanoma initiation and metastasis. However, metastatic colonization is less efficient in the absence of Brn2. Mechanistically, BRN2 directly induces PTEN expression and in consequence represses PI3K signaling. Moreover, MITF, a BRN2 target, represses PTEN transcription. Collectively, our results suggest that on a PTEN heterozygous background somatic deletion of one BRN2 allele and temporal regulation of the other allele elicits melanoma initiation and progression.


Asunto(s)
Carcinogénesis/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Genes Supresores de Tumor , Proteínas de Homeodominio/metabolismo , Melanoma/metabolismo , Factores del Dominio POU/metabolismo , Neoplasias Cutáneas/metabolismo , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Progresión de la Enfermedad , Técnicas de Silenciamiento del Gen , Haploinsuficiencia , Proteínas de Homeodominio/genética , Humanos , Inmunohistoquímica , Melanoma/genética , Melanoma/mortalidad , Melanoma/secundario , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis por Micromatrices , Factor de Transcripción Asociado a Microftalmía/metabolismo , Mutación , Factores del Dominio POU/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , ARN Interferente Pequeño , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/mortalidad , Neoplasias Cutáneas/secundario , Melanoma Cutáneo Maligno
14.
Cancer Res ; 67(5): 2317-24, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17332363

RESUMEN

Melanoma has a propensity to metastasize to bone, where it is exposed to high concentrations of transforming growth factor-beta (TGF-beta). Because TGF-beta promotes bone metastases from other solid tumors, such as breast cancer, we tested the role of TGF-beta in melanoma metastases to bone. 1205Lu melanoma cells, stably transfected to overexpress the natural TGF-beta/Smad signaling inhibitor Smad7, were studied in an experimental model of bone metastasis whereby tumor cells are inoculated into the left cardiac ventricle of nude mice. All mice bearing parental and mock-transfected 1205Lu cells developed osteolytic bone metastases 5 weeks post-tumor inoculation. Mice bearing 1205Lu-Smad7 tumors had significantly less osteolysis on radiographs and longer survival compared with parental and mock-transfected 1205Lu mice. To determine if the reduced bone metastases observed in mice bearing 1205Lu-Smad7 clones was due to reduced expression of TGF-beta target genes known to enhance metastases to bone from breast cancer cells, we analyzed gene expression of osteolytic factors, parathyroid hormone-related protein (PTHrP) and interleukin-11 (IL-11), the chemotactic receptor CXCR4, and osteopontin in 1205Lu cells. Quantitative reverse transcription-PCR analysis indicated that PTHrP, IL-11, CXCR4, and osteopontin mRNA steady-state levels were robustly increased in response to TGF-beta and that Smad7 and the TbetaRI small-molecule inhibitor, SB431542, prevented such induction. In addition, 1205Lu-Smad7 bone metastases expressed significantly lower levels of IL-11, connective tissue growth factor, and PTHrP. These data suggest that TGF-beta promotes osteolytic bone metastases due to melanoma by stimulating the expression of prometastatic factors via the Smad pathway. Blockade of TGF-beta signaling may be an effective treatment for melanoma metastasis to bone.


Asunto(s)
Neoplasias Óseas/secundario , Melanoma/genética , Melanoma/patología , Proteína smad7/genética , Animales , Neoplasias Óseas/genética , Femenino , Humanos , Melanoma/metabolismo , Ratones , Ratones Desnudos , Metástasis de la Neoplasia/genética , Proteína smad7/metabolismo , Análisis de Supervivencia , Transfección , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Células Tumorales Cultivadas
15.
Pigment Cell Melanoma Res ; 32(6): 829-841, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31251472

RESUMEN

RAS is frequently mutated in various tumors and known to be difficult to target. NRASQ61K/R are the second most frequent mutations found in human skin melanoma after BRAFV600E . Aside from surgery, various approaches, including targeted therapies, immunotherapies, and combination therapies, are used to treat patients carrying NRAS mutations, but they are inefficient. Here, we established mouse NRASQ61K melanoma cell lines and genetically derived isografts (GDIs) from Tyr::NRASQ61K mouse melanoma that can be used in vitro and in vivo in an immune-competent environment (C57BL/6) to test and discover novel therapies. We characterized these cell lines at the cellular, molecular, and oncogenic levels and show that NRASQ61K melanoma is highly sensitive to the combination of Mek and Akt inhibitors. This preclinical model shows much potential for the screening of novel therapeutic strategies for patients harboring NRAS mutations that have limited therapeutic options and resulted in poor prognoses.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Melanoma/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Proteínas de Unión al GTP Monoméricas/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Bencimidazoles/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Melanocitos/efectos de los fármacos , Melanocitos/patología , Ratones Endogámicos C57BL , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Modelos Biológicos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
16.
Sci Adv ; 5(7): eaau5106, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31328154

RESUMEN

Metabolic processes underlying the development of the neural crest, an embryonic population of multipotent migratory cells, are poorly understood. Here, we report that conditional ablation of the Lkb1 tumor suppressor kinase in mouse neural crest stem cells led to intestinal pseudo-obstruction and hind limb paralysis. This phenotype originated from a postnatal degeneration of the enteric nervous ganglia and from a defective differentiation of Schwann cells. Metabolomic profiling revealed that pyruvate-alanine conversion is enhanced in the absence of Lkb1. Mechanistically, inhibition of alanine transaminases restored glial differentiation in an mTOR-dependent manner, while increased alanine level directly inhibited the glial commitment of neural crest cells. Treatment with the metabolic modulator AICAR suppressed mTOR signaling and prevented Schwann cell and enteric defects of Lkb1 mutant mice. These data uncover a link between pyruvate-alanine cycling and the specification of glial cell fate with potential implications in the understanding of the molecular pathogenesis of neural crest diseases.


Asunto(s)
Alanina/metabolismo , Cresta Neural/citología , Cresta Neural/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ácido Pirúvico/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Diferenciación Celular/genética , Metabolismo Energético , Sistema Nervioso Entérico , Silenciador del Gen , Melanocitos/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Degeneración Nerviosa/etiología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuroglía/citología , Neuroglía/metabolismo , Enfermedades del Sistema Nervioso Periférico/etiología , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades del Sistema Nervioso Periférico/patología , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
17.
Pigment Cell Melanoma Res ; 31(3): 423-431, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29224244

RESUMEN

Genetically engineered mouse models offer essential opportunities to investigate the mechanisms of initiation and progression in melanoma. Here, we report a new simplified histopathology classification of mouse melanocytic lesions in Tyr::NRASQ61K derived models, using an interactive decision tree that produces homogeneous categories. Reproducibility for this classification system was evaluated on a panel of representative cases of murine melanocytic lesions by pathologists and basic scientists. Reproducibility, measured as inter-rater agreement between evaluators using a modified Fleiss' kappa statistic, revealed a very good agreement between observers. Should this new simplified classification be adopted, it would create a robust system of communication between researchers in the field of mouse melanoma models.


Asunto(s)
Melanoma , Proteínas de Unión al GTP Monoméricas , Mutación Missense , Sustitución de Aminoácidos , Animales , Melanoma/clasificación , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones Transgénicos , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo
18.
Sci Total Environ ; 373(1): 49-56, 2007 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17169410

RESUMEN

The spatial distribution of urban population exposures to ambient air particles was investigated as part of the Genotox'ER study conducted in four metropolitan areas (Grenoble, Paris, Rouen and Strasbourg) in France. In each city, 60 to 90 non-smoking adult and children volunteers were selected. Subjects lived in three different urban sectors: one highly exposed to traffic emissions, one influenced by local industrial sources, and a background urban environment. The Harvard Chempass multi-pollutant personal sampler was used to sample PM10 and PM2.5 particles during 48 h during two different seasons ('hot' and 'cold'). The elemental composition of the filters was analysed by Particle-Induced X-ray Emission (PIXE). Sixteen elements were found to be over the method detection limits: Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb. The relative concentrations of elements of crustal origin (Si, Al, Ca) were higher in the coarse fraction of PM10 filters, while elements associated with combustion processes (traffic emissions or industrial combustion) presented higher relative concentrations in the PM2.5 fraction (S, Ni, V, Pb). Spatial heterogeneity of elemental exposures by urban sector is substantial for some metals of health concern, with 20% to 90% greater exposure values, on average, in the traffic proximity or industrial sectors, compared to the background sector, for Fe, Zn, Cu, V and Cr. This spatial heterogeneity should not be overlooked in epidemiological or risk assessment studies.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Metales/análisis , Material Particulado/análisis , Adolescente , Adulto , Anciano , Niño , Ciudades , Francia , Humanos , Residuos Industriales , Persona de Mediana Edad , Tamaño de la Partícula , Emisiones de Vehículos
19.
Oncogene ; 24(51): 7624-9, 2005 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-16007121

RESUMEN

We previously identified constitutive Smad signaling in human melanoma cells despite resistance to transforming growth factor-beta (TGF-beta) control of cell proliferation. This led us to investigate the effect of inhibitory Smad7 overexpression on melanoma cell behavior. Using the highly metastatic cell line, 1205-Lu, we thus generated melanoma cell clones constitutively expressing Smad7, and their mock-transfected counterparts. Stable expression of Smad7 resulted in an inhibition of constitutive Smad2/3 phosphorylation, and in a reduced TGF-beta response of Smad3/Smad4-driven gene transactivation, as measured using transfected Smad3/4-specific reporter gene constructs. Smad7 overexpression, however, did not alter their proliferative capacity and resistance to TGF-beta-driven growth inhibition. On the other hand, expression of Smad7 efficiently reduced the capacity of human melanoma cells to invade Matrigel in Boyden migration chambers, while not affecting their motility and adhesion to collagen and laminin. Gelatin zymography identified reduced MMP-2 and MMP-9 secretion by Smad7-expressing melanoma cells as compared with their control counterparts. Smad7-expressing melanoma cells exhibited a dramatically reduced capacity to form colonies under anchorage-independent culture conditions, and, when injected subcutaneously into nude mice, were largely delayed in their ability to form tumors. These results suggest that TGF-beta production by melanoma cells not only affects the tumor environment but also directly contributes to tumor cell aggressiveness through autocrine activation of Smad signaling.


Asunto(s)
Melanoma/patología , Neoplasias Cutáneas/patología , Proteína smad7/biosíntesis , Animales , Adhesión Celular , Movimiento Celular , Perfilación de la Expresión Génica , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Melanoma/metabolismo , Ratones , Ratones Desnudos , Invasividad Neoplásica , Metástasis de la Neoplasia , Transducción de Señal , Neoplasias Cutáneas/metabolismo , Proteína smad7/fisiología , Factor de Crecimiento Transformador beta , Células Tumorales Cultivadas
20.
Front Biosci ; 11: 733-42, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16146765

RESUMEN

The Wnt/beta-catenin pathway is involved in various cellular activities--including determination, proliferation, migration and differentiation--in embryonic development and adult homeostasis. The deregulation or constitutive activation of the Wnt/beta-catenin pathway may lead to cancer formation. This review focuses on the role of the Wnt/beta-catenin canonical signaling pathway in the melanocyte lineage, and more specifically, in melanoma. Several components of the Wnt/beta-catenin pathway, such as APC, ICAT, LEF1 and beta-catenin are modified in melanoma tumors and cell lines, leading to activation of this signaling. A hallmark of the activation of this pathway is the presence of beta-catenin in the nucleus. Indeed, beta-catenin is found in about 30% of human melanoma nuclei, indicating a potentially specific role for this signaling pathway in this aggressive type of cancer. Beta-catenin can induce ubiquitous genes such as myc or cyclinD1, cell lineage-restricted genes such as Brn2 and melanocyte-specific genes such as Mitf-M and Dct. The Mitf-M and Brn-2 genes encode transcription factors. Mitf plays a critical role in melanocyte survival, proliferation and differentiation. Brn-2 is involved in melanoma proliferation. Determining how the Wnt/beta-catenin signaling pathway, alone or with other pathways, orchestrates the induction of target genes involved in a diverse range of activities represents a major challenge in research into melanoma formation and tumor progression.


Asunto(s)
Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Moléculas de Adhesión Celular/metabolismo , Diferenciación Celular , Linaje de la Célula , Membrana Celular/metabolismo , Movimiento Celular , Núcleo Celular/metabolismo , Proliferación Celular , Ciclina D1/metabolismo , Citoplasma/metabolismo , Hepatocitos/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Oxidorreductasas Intramoleculares/metabolismo , Melanocitos/metabolismo , Melanoma/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Cresta Neural/metabolismo , Factores del Dominio POU/metabolismo , Transducción de Señal , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA