RESUMEN
Bacteria from the leaf surface and the leaf tissue have been attributed with several beneficial properties for their plant host. Though physically connected, the microbial ecology of these compartments has mostly been studied separately such that we lack an integrated understanding of the processes shaping their assembly. We sampled leaf epiphytes and endophytes from the same individuals of sugar maple across the northern portion of its range to evaluate if their community composition was driven by similar processes within and across populations differing in plant traits and overall abiotic environment. Leaf compartment explained most of the variation in community diversity and composition across samples. Leaf epiphytic communities were driven more by host and site characteristics than endophytic communities, whose community composition was more idiosyncratic across samples. Our results suggest a greater importance of priority effects and opportunistic colonization in driving community assembly of leaf endophytes. Understanding the comparative assembly of bacterial communities at the surface and inside plant leaves may be particularly useful for leveraging their respective potential for improving the health of plants in natural and anthropized ecosystems.