RESUMEN
Purely organic materials with room-temperature phosphorescence (RTP) are currently under intense investigation because of their potential applications in sensing, imaging, and displaying. Inspired by certain organometallic systems, where ligand-localized phosphorescence ((3) π-π*) is mediated by ligand-to-metal or metal-to-ligand charge transfer (CT) states, we now show that donor-to-acceptor CT states from the same organic molecule can also mediate π-localized RTP. In the model system of N-substituted naphthalimides (NNIs), the relatively large energy gap between the NNI-localized (1) π-π* and (3) π-π* states of the aromatic ring can be bridged by intramolecular CT states when the NNI is chemically modified with an electron donor. These NNI-based RTP materials can be easily conjugated to both synthetic and natural macromolecules, which can be used for RTP microscopy.
RESUMEN
Aggregation-induced emission (AIE) is an important photophysical phenomenon in molecular materials and has found broad applications in optoelectronics, bioimaging, and chemosensing. Currently, the majority of reported AIE-active molecules are based on either propeller-shaped rotamers or donor-acceptor molecules with strong intramolecular charge-transfer states. Here, we report a new design motif, where a fluorophore is covalently tethered to a quencher, to expand the scope of AIE-active materials. The fluorophore-quencher dyad (FQD) is nonemissive in solutions due to photoinduced electron-transfer quenching but becomes luminescent in the solid state. The intrinsic emission lifetimes are found to be within the microseconds domain at both room and low temperatures. We performed single-crystal X-ray diffraction measurement for each of the FQDs as well as theoretical calculations to account for the possible origin of the long-lived AIE. These FQDs represent a new class of AIE-active molecules with potential applications in organic optoelectronics.
Asunto(s)
Colorantes Fluorescentes/química , Luminiscencia , Cristalografía por Rayos X , Transporte de Electrón , Microscopía Fluorescente , Modelos Moleculares , Estructura MolecularRESUMEN
A suite of Ru(II) complexes in which one ligand is pH responsive and the other two are varied in an effort to achieve improved photophysics has been synthesized and their potential as pH reporters assessed. The more general purpose of the study was to examine the role of the accessory ligands in heteroleptic reporter complexes and the degree to which such ligands can affect the performance of luminescent reporters. For this suite of complexes, judicious choice of the accessory ligand can alter both the pK(a)* and the dynamic range of response. It was found that the emission color and brightness were influenced by pH, but the lifetimes were only weakly affected. Surprisingly, some accessory ligands which should have improved luminescent properties essentially turned off the pH response. Several possible reasons for this observation are explored. It is suggested, and density functional theory (DFT) calculations support, that the relative π* levels of the pH sensitive and the accessory ligands are critical.
RESUMEN
The synthesis of some heteroleptic, cyclometalated iridium(III) complexes is described. The utility of these [Ir(ppy)(2)(N-N)]Cl (ppy = 2-phenylpyridine and N-N = substituted bipyridine, biquinoline, or phenanthroline) complexes as luminescence-based sensors is assessed. The emission intensity of an Ir(III) complex featuring the 3,3'-H(n)dcbpy ligand (H(n)dcbpy = dicarboxylic acid-2,2'-bipyridine; n = 0,1,2 to indicate deprotonated, mono- and diprotonated species, respectively) is seen to increase in the presence of Pb(II). Insight into the structure and analyte-sensing capability is achieved by X-ray crystallography in conjunction with computational modeling. Complexes incorporating carboxylic acid-functionalized bipyridine and biquinoline as the polypyridyl ligand show pH sensitivity while similar phenanthroline complexes do not.
RESUMEN
A suite of luminescent Re(I) complexes has been prepared whose emissive properties are responsive to the probe's local environment. These complexes were embedded in a series of chemically similar polymers whose room temperature rigidity varied over a significant range. It is shown that the degree of local rigidity experienced by the embedded complexes significantly alters the observed emission in terms of both spectra and lifetime. Time resolved emission measurements show that the spectral shifts and lifetime complexity are correlated and track well the polymers' T(g) within the series. Fluorescence confocal microscopy did not show the presence of discrete domains, and thus, the environmental features responsible for the altered photophysics must be submicrometer in size.
RESUMEN
Lifetime-based oxygen imaging is useful in many biological applications but instrumentation can be stationary, expensive, and complex. Herein, we present a portable, cost effective, simple alternative with high spatiotemporal resolution that uses a complementary metal oxide silicon (CMOS) camera to measure oxygen sensitive lifetimes on the millisecond scale. We demonstrate its compatibility with difluoroboron ß-diketonate poly(lactic acid) (BF2bdkPLA) polymers which are nontoxic and exhibit long-lived oxygen sensitive phosphorescence. Spatially resolved lifetimes of four BF2bdkPLA variants are measured using nonlinear least squares (NLS) and rapid lifetime determination (RLD) both of which are shown to be accurate and precise. Real-time imaging in a dynamic environment is demonstrated by determining lifetime pixel-wise. The setup costs less than $5000, easily fits into a backpack, and can operate on battery power alone. This versatility combined with the inherent utility of lifetime measurements make this system a useful tool for a wide variety of oxygen sensing applications. This study serves as an important foundation for the development of dual mode real time lifetime plus ratiometric imaging with bright, long lifetime difluoroboron ß-diketonate probes.
RESUMEN
Difluoroboron ß-diketonate poly(lactic acid) materials exhibit both fluorescence (F) and oxygen sensitive room-temperature phosphorescence (RTP). Introduction of halide heavy atoms (Br and I) is an effective strategy to control the oxygen sensitivity in these materials. A series of naphthyl-phenyl (nbm) dye derivatives with hydrogen, bromide and iodide substituents were prepared for comparison. As nanoparticles, the hydrogen derivative was hypersensitive to oxygen (0-0.3%), while the bromide analogue was suited for hypoxia detection (0-3% O2). The iodo derivative, BF2nbm(I)PLA, showed excellent F to RTP peak separation and an 0-100% oxygen sensitivity range unprecedented for metal-free RTP emitting materials. Due to the dual emission and unconventionally long RTP lifetimes of these O2 sensing materials, a portable, cost-effective camera was used to quantify oxygen levels via lifetime and red/green/blue (RGB) ratiometry. The hypersensitive H dye was well matched to lifetime detection, simultaneous lifetime and ratiometric imaging was possible for the bromide analogue, whereas the iodide material, with intense RTP emission and a shorter lifetime, was suited for RGB ratiometry. To demonstrate the prospects of this camera/material design combination for bioimaging, iodide boron dye-PLA nanoparticles were applied to a murine wound model to detect oxygen levels. Surprisingly, wound oxygen imaging was achieved without covering (i.e. without isolating from ambient conditions, air). Additionally, would healing was monitored via wound size reduction and associated oxygen recovery, from hypoxic to normoxic. These single-component materials provide a simple tunable platform for biological oxygen sensing that can be deployed to spatially resolve oxygen in a variety of environments.
RESUMEN
A simple phosphoroscope with no moving parts is described. In one scan the total luminescence, the long-lived phosphorescence, and the short-lived fluorescence can be determined. A 50% duty cycle excitation from a diode laser is used to excite the sample, and from the digitized waveform the phosphorescence is extracted from the off period, the total emission from the full cycle, and the fluorescence from the on period corrected for the phosphorescence contribution. The performance of the system is demonstrated using room-temperature phosphorescence of organic dyes in boric acid glasses, a multi-emissive boron-polymer dye, and a europium chelate.