Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(40): 27335-27344, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39329237

RESUMEN

The construction of multiple heptagonal rings in nanographene is the key step for obtaining exotic carbon nanostructures with a negative curvature and intriguing properties. Herein, a novel saddle-shaped nanographene (1) with four embedded heptagons is synthesized via a highly efficient one-shot Scholl reaction from a predesigned oligophenylene precursor. Notably, a quadruple [6]helicene intermediate was also obtained and isolated by controlling the Scholl reaction conditions. Interestingly, the single crystal structures of 1 display a saddle geometry induced by the four embedded heptagons, resulting in a deep curvature with a width of 16.5 Å and a depth of 8.0 Å. Theoretical calculations at the molecular level suggest a weak antiaromatic character of the heptagons in 1. Remarkably, compound 1 exhibits dual fluorescence from S1 and S2. The deep-saddle-shaped geometry in 1 defines host-guest interactions with fullerenes, which were explored in titration experiments and by theoretical methods. The resulting 1@C60 are stable and are subject to an electron transfer from photoexcited 1 to C60. Our current study underscores the influence of heptagon rings on the photophysical, self-assembly, and electron-donating properties of NGs.

2.
Phys Rev Lett ; 133(3): 036401, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39094172

RESUMEN

It is of fundamental importance to characterize the intrinsic properties, like the topological end states, in the on-surface synthesized graphene nanoribbons (GNRs), but the strong electronic interaction with the metal substrate usually smears out their characteristic features. Here, we report our approach to investigate the vibronic excitations of the topological end states in self-decoupled second-layer GNRs, which are grown using an on-surface squeezing-induced spillover strategy. The vibronic progressions show highly spatially localized distributions at the second-layer GNR ends, which can be ascribed to the decoupling-extended lifetime of charging through resonant electron tunneling at the topological end states. In combination with theoretical calculations, we assign the vibronic progressions to specific vibrational modes that mediate the vibronic excitations. The spatial distribution of each resolved excitation shows evident characteristics beyond the conventional Franck-Condon picture. Our work by direct growth of second-layer GNRs provides an effective way to explore the interplay between the intrinsic electronic, vibrational, and topological properties.

3.
Angew Chem Int Ed Engl ; : e202414383, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223084

RESUMEN

Multiple resonance (MR) boron-nitrogen doped polycyclic aromatic hydrocarbons (BN-PAHs) showed compelling thermally activated delayed fluorescence (TADF), surpassing those of their hydrocarbon analogs. However, the structural variety of π-extended BN-PAHs remains narrow. In this study, we synthesized three double helical BN-doped nanographenes (BN-NGs), 2a-2c, via the π-extension of the MR core. During the formation of 2a, a nanographene with one heptagon (1a) was obtained, whereas subsequent dehydrocyclization of the [6]helicene units within 2b-2c led to heptagon structures, yielding other two BN-NGs containing double heptagons (1b-1c). These BN-NGs (2a-2c and 1a-1c) showed pronounced redshifts of 100-190 nm compared to the parent MR core while preserving the TADF characteristics and prolonging the delayed fluorescence lifetime to the millisecond level. Furthermore, the integration of heptagon ring into 1a-1c expanded the conjugation, reduced the oxidation potentials, and yielded a more flexible framework compared to those of 2a-2c. The enantiomers of 2a-2c, 1a, and 1c were resolved and their chiroptical properties were studied. Notably, 1a and 1c exhibited the increased chiroptical dissymmetry factors.

4.
Dalton Trans ; 53(31): 13207-13215, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39051156

RESUMEN

Molecular-based magnetic materials are expected to serve as building blocks for quantum bits. To realize high-dimensional Hilbert space and addressability, we constructed anisotropic multi-level systems based on CuII and VIV with orthogonal magnetic orbitals. The crystal structures and intramolecular magnetic couplings of four CuIIVOII complexes [{CuVO(appen)2}2], [{CuVO(fhma)2EDA}2], [{CuVO(hfca)2EDA}2] and [CuVO(hfca)2DPEDA]n are characterized. Due to the orthogonal magnetic orbitals of CuII and VIV, the Cu-V pairs in the four complexes have strong ferromagnetic couplings, and the coupling strength is linearly related to the dihedral angle between the two equatorial planes of the two coordination polyhedra. Because of the triplet ground state, the system can be described by an effective Hamiltonian model consisting of two S = 1 spins coupled together. The anisotropy parameters of [{CuVO(hfca)2EDA}2] and [CuVO(hfca)2DPEDA]n were obtained by the simulation of X-band continuous wave electron paramagnetic resonance (cw-EPR) spectra, confirming that both complexes have zero-field splitting addressable on the relative energy scale. The results indicate that constructing multi-centre complexes based on orthogonal magnetic orbitals is a promising strategy for designing multidimensional quantum bits.

5.
Bioact Mater ; 27: 409-428, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37152712

RESUMEN

Diabetic wound healing has become a serious healthcare challenge. The high-glucose environment leads to persistent bacterial infection and mitochondrial dysfunction, resulting in chronic inflammation, abnormal vascular function, and tissue necrosis. To solve these issues, we developed a double-network hydrogel, constructed with pluronic F127 diacrylate (F127DA) and hyaluronic acid methacrylate (HAMA), and enhanced by SS31-loaded mesoporous polydopamine nanoparticles (MPDA NPs). As components, SS31, a mitochondria-targeted peptide, maintains mitochondrial function, reduces mitochondrial reactive oxygen species (ROS) and thus regulates macrophage polarization, as well as promoting cell proliferation and migration, while MPDA NPs not only scavenge ROS and exert an anti-bacterial effect by photothermal treatment under near-infrared light irradiation, but also control release of SS31 in response to ROS. This F127DA/HAMA-MPDA@SS31 (FH-M@S) hydrogel has characteristics of adhesion, superior biocompatibility and mechanical properties which can adapt to irregular wounds at different body sites and provide sustained release of MPDA@SS31 (M@S) NPs. In addition, in a diabetic rat full thickness skin defect model, the FH-M@S hydrogel promoted macrophage M2 polarization, collagen deposition, neovascularization and wound healing. Therefore, the FH-M@S hydrogel exhibits promising therapeutic potential for skin regeneration.

6.
J Nanosci Nanotechnol ; 20(12): 7743-7747, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32711652

RESUMEN

A thin, clean pristine Au film created in a transmission electron microscope chamber was tailored by an electron beam. Various kinds of nanopatterns, including hexagonal holes and dumbbell-like patterns, were fabricated by different doses of the electron beam. A high-quality series of in situ images were recorded to explore the irradiation mechanism. The electron-matter collision enabled the electron beam to act as a tweezer to arrange atoms into a specified pattern.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA