Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(25): e2216206120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307441

RESUMEN

Recurrent miscarriage (RM) is a distressing pregnancy complication. While the etiology of RM remains unclear, growing evidence has indicated the relevance of trophoblast impairment to the pathogenesis of RM. PR-SET7 is the sole enzyme catalyzing monomethylation of H4K20 (H4K20me1) and has been implicated in many pathophysiological processes. However, how PR-SET7 functions in trophoblasts and its relevance to RM remain unknown. Here, we found that trophoblast-specific loss of Pr-set7 in mice led to defective trophoblasts, resulting in early embryonic loss. Mechanistic analysis revealed that PR-SET7 deficiency in trophoblasts derepressed endogenous retroviruses (ERVs), leading to double-stranded RNA stress and subsequent viral mimicry, which drove overwhelming interferon response and necroptosis. Further examination discovered that H4K20me1 and H4K20me3 mediated the inhibition of cell-intrinsic expression of ERVs. Importantly, dysregulation of PR-SET7 expression and the corresponding aberrant epigenetic modifications were observed in the placentas of RM. Collectively, our results demonstrate that PR-SET7 acts as an epigenetic transcriptional modulator essential for repressing ERVs in trophoblasts, ensuring normal pregnancy and fetal survival, which sheds new light on potential epigenetic causes contributing to RM.


Asunto(s)
Aborto Habitual , Retrovirus Endógenos , Femenino , Embarazo , Humanos , Animales , Ratones , Trofoblastos , Necroptosis , Placenta
2.
Nucleic Acids Res ; 51(10): 4745-4759, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-36864754

RESUMEN

Endogenous retroviruses (ERVs) have been proposed as a driving force for the evolution of the mammalian placenta, however, the contribution of ERVs to placental development and the underlying regulatory mechanism remain largely elusive. A key process of placental development is the formation of multinucleated syncytiotrophoblasts (STBs) in direct contact with maternal blood, through which constitutes the maternal-fetal interface critical for nutrient allocation, hormone production and immunological modulation during pregnancy. We delineate that ERVs profoundly rewire the transcriptional program of trophoblast syncytialization. Here, we first determined the dynamic landscape of bivalent ERV-derived enhancers with dual occupancy of H3K27ac and H3K9me3 in human trophoblast stem cells (hTSCs). We further demonstrated that enhancers overlapping several ERV families tend to exhibit increased H3K27ac and reduced H3K9me3 occupancy in STBs relative to hTSCs. Particularly, bivalent enhancers derived from the Simiiformes-specific MER50 transposons were linked to a cluster of genes important for STB formation. Importantly, deletions of MER50 elements adjacent to several STB genes, including MFSD2A and TNFAIP2, significantly attenuated their expression concomitant to compromised syncytium formation. Together, we propose that ERV-derived enhancers, MER50 specifically, fine-tune the transcriptional networks accounting for human trophoblast syncytialization, which sheds light on a novel ERV-mediated regulatory mechanism underlying placental development.


Asunto(s)
Retrovirus Endógenos , Elementos de Facilitación Genéticos , Placenta , Trofoblastos , Animales , Femenino , Humanos , Embarazo , Retrovirus Endógenos/genética , Regulación de la Expresión Génica , Mamíferos/crecimiento & desarrollo , Placenta/citología , Placenta/fisiología , Trofoblastos/fisiología
3.
PLoS Genet ; 18(1): e1010018, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35025868

RESUMEN

Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein ß (C/EBPß) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure.


Asunto(s)
Decidua/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Útero/citología , Animales , Línea Celular , Proliferación Celular , Implantación del Embrión , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Humanos , Ratones , Embarazo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Transducción de Señal , Células del Estroma/citología , Células del Estroma/metabolismo , Útero/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35169075

RESUMEN

Thin endometrium has been widely recognized as a critical cause of infertility, recurrent pregnancy loss, and placental abnormalities; however, access to effective treatment is a formidable challenge due to the rudimentary understanding of the pathogenesis of thin endometrium. Here, we profiled the transcriptomes of human endometrial cells at single-cell resolution to characterize cell types, their communications, and the underlying mechanism of endometrial growth in normal and thin endometrium during the proliferative phase. Stromal cells were the most abundant cell type in the endometrium, with a subpopulation of proliferating stromal cells whose cell cycle signaling pathways were compromised in thin endometrium. Both single-cell RNA sequencing and experimental verification revealed cellular senescence in the stroma and epithelium accompanied by collagen overdeposition around blood vessels. Moreover, decreased numbers of macrophages and natural killer cells further exacerbated endometrial thinness. In addition, our results uncovered aberrant SEMA3, EGF, PTN, and TWEAK signaling pathways as causes for the insufficient proliferation of the endometrium. Together, these data provide insight into therapeutic strategies for endometrial regeneration and growth to treat thin endometrium.


Asunto(s)
Endometrio/metabolismo , Endometrio/patología , Endometrio/fisiología , Proteínas Portadoras/metabolismo , Citocina TWEAK/metabolismo , Citocinas/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Células Epiteliales/metabolismo , Epitelio , Femenino , Expresión Génica/genética , Humanos , Infertilidad Femenina/etiología , Infertilidad Femenina/fisiopatología , Semaforina-3A/genética , Semaforina-3A/metabolismo , Transducción de Señal/genética , Análisis de la Célula Individual , Células del Estroma/metabolismo , Transcriptoma/genética
5.
Proc Natl Acad Sci U S A ; 119(32): e2206000119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914132

RESUMEN

Estrogen and progesterone specify the establishment of uterine receptivity mainly through their respective nuclear receptors, ER and PR. PR is transcriptionally induced by estrogen-ER signaling in the endometrium, but how the protein homeostasis of PR in the endometrium is regulated remains elusive. Here, we demonstrated that the uterine-selective depletion of P38α derails normal uterine receptivity ascribed to the dramatic down-regulation of PR protein and disordered progesterone responsiveness in the uterine stromal compartment, leading to defective implantation and female infertility. Specifically, Ube3c, an HECT family E3 ubiquitin ligase, targets PR for polyubiquitination and thus proteasome degradation in the absence of P38α. Moreover, we discovered that P38α restrains the polyubiquitination activity of Ube3c toward PR by phosphorylating the Ube3c at serine741 . In summary, we provided genetic evidence for the regulation of PR protein stability in the endometrium by P38α and identified Ube3c, whose activity was modulated by P38α-mediated phosphorylation, as an E3 ubiquitin ligase for PR in the uterus.


Asunto(s)
Implantación del Embrión , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 14 Activada por Mitógenos , Progesterona , Útero , Animales , Implantación del Embrión/fisiología , Endometrio/metabolismo , Femenino , Infertilidad Femenina , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Fosforilación , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Útero/enzimología , Útero/metabolismo
6.
J Cell Physiol ; 239(6): e31244, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38529784

RESUMEN

Maternal histone methyltransferase is critical for epigenetic regulation and development of mammalian embryos by regulating histone and DNA modifications. Here, we reported a novel mechanism by revealing the critical effects of maternal Ezh1/2 deletion on mitochondria in MII oocytes and early embryos in mice. We found that Ezh1/2 knockout in mouse MII oocytes impaired the structure of mitochondria and decreased its number, but membrane potential and respiratory function of mitochondrion were increased. The similar effects of Ezh1/2 deletion have been observed in 2-cell and morula embryos, indicating that the effects of maternal Ezh1/2 deficiency on mitochondrion extend to early embryos. However, the loss of maternal Ezh1/2 resulted in a severe defect of morula: the number, membrane potential, respiratory function, and ATP production of mitochondrion dropped significantly. Content of reactive oxygen species was raised in both MII oocytes and early embryos, suggesting maternal Ezh1/2 knockout induced oxidative stress. In addition, maternal Ezh1/2 ablation interfered the autophagy in morula and blastocyst embryos. Finally, maternal Ezh1/2 deletion led to cell apoptosis in blastocyst embryos in mice. By analyzing the gene expression profile, we revealed that maternal Ezh1/2 knockout affected the expression of mitochondrial related genes in MII oocytes and early embryos. The chromatin immunoprecipitation-polymerase chain reaction assay demonstrated that Ezh1/2 directly regulated the expression of genes Fxyd6, Adpgk, Aurkb, Zfp521, Ehd3, Sgms2, Pygl, Slc1a1, and Chst12 by H3K27me3 modification. In conclusion, our study revealed the critical effect of maternal Ezh1/2 on the structure and function of mitochondria in oocytes and early embryos, and suggested a novel mechanism underlying maternal epigenetic regulation on early embryonic development through the modulation of mitochondrial status.


Asunto(s)
Mitocondrias , Oocitos , Complejo Represivo Polycomb 2 , Animales , Femenino , Ratones , Apoptosis/genética , Autofagia/genética , Blastocisto/metabolismo , Desarrollo Embrionario/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/deficiencia , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Potencial de la Membrana Mitocondrial , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/genética , Mórula/metabolismo , Oocitos/metabolismo , Estrés Oxidativo/genética , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Especies Reactivas de Oxígeno/metabolismo , Histonas/metabolismo
7.
Environ Res ; 231(Pt 3): 116260, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37247650

RESUMEN

Goethite is ubiquitous in the environment and plays key role in preserving dissolved organic matter (DOM) and deactivating potentially toxic elements (PTEs) by adsorbing DOM and PTEs. Various non-Fe metals are usually incorporated into natural goethite, substituting Fe in the goethite structure, which dramatically influence the physico-chemical properties and adsorption behavior of the goethite. In the present study, adsorption of DOM and Pb(II) on Mn-substituted goethite samples was investigated. The results displayed that the specific surface area (SSA) of mineral samples increased by 67.6% as the incorporation of Mn for Fe, from 25.71 m2 g-1 for pure goethite to 43.09 m2 g-1for Mn-goethite. Besides, the Mn substitution caused more hydroxyl groups and relatively fewer positive charges on mineral surface, and Mn in the Mn-goethite samples was predominantly present as Mn(III). The amount of DOM adsorbed to per unit mass of goethite was increased as Mn content increased, which was attributed to Mn incorporation increasing the SSA of mineral samples. However, the SSA-normalized absorption capacity for goethite to DOM was decreased by Mn because Mn substitution decreased the number of positive charges of mineral samples, which weakened the electrostatic attraction between DOM and the minerals. The amount of Pb(II) adsorbed to per unit mass of goethite was increased by Mn substitution, and the amount of Pb(II) adsorbed to per unit SSA of goethite increased as the amount of Mn substitution increased, indicating that the increased capacity for adsorbing Pb was not only caused by the SSA increasing but also by there were more surface hydroxyl groups on the Mn-goethite than pure goethite and Pb(II) preferentially adsorbed to Mn sites on the Mn-goethite. The present study results showed that Mn-goethite could be used to sequester DOM and remediate soil contaminated with PTEs because Mn-goethite has a high adsorption capacity and is environmentally benign.


Asunto(s)
Materia Orgánica Disuelta , Suelo , Suelo/química , Adsorción , Cinética , Minerales/química
8.
Ecotoxicol Environ Saf ; 253: 114689, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36857921

RESUMEN

Understanding the factors that controlling the agricultural soil heavy metals/metalloids distribution is vital for cropland soil remediation and management. For this objective, 227 agricultural soils were sampled in the Guanzhong Plain, China, to measure the concentration of five heavy metals (Pb, Cd, Ni, Zn, and Cu) and one metalloid (As) by X-ray fluorescence spectrometer, meanwhile, 24 possible influencing factors to agricultural soil heavy metals/metalloid distribution were collected and grouped into three categories. A sequential multivariate statistical analysis was carried out to provide insight into the controlling factors of soil heavy metals/metalloid distribution, then stepwise multiple linear regression (SMLR) and partial least squares regression (PLS) were used to predict heavy metals/metalloid concentrations in agricultural soil based on the result of soil heavy metals/metalloid controlling factors identification. The results demonstrated the types of soil and land use did not have a substantial effect on soil heavy metals/metalloid distribution, except Zn and Cu. The soil properties category played a major role in influencing the soil heavy metals/metalloid concentration. The concentrations of Mn and Fe, which are the main constitute elements of soil inorganic colloid, were the most significant factors, followed by the concentrations of P, K and Ca. Soil pH and soil organic matter (SOM) content, which are often considered as important factors for soil heavy metals/metalloid distribution, were not important in the present study. The SMLR was more effective than the PLS for predicting soil heavy metals/metalloid content. The results of this study enlighten that future soil heavy metals/metalloid contamination treatment in regions with high pH and low SOM content should concentrate on inorganic colloid particles, which have strong adsorption capacity for soil heavy metals/metalloid and are environmentally friendly. Moreover, the combination of successive multivariate statistical analysis and SMLR provide an effective tool to predict and monitor agricultural soil heavy metals/metalloid distribution, and facilitate the improvement of environmental and territorial management.


Asunto(s)
Metaloides , Metales Pesados , Contaminantes del Suelo , Suelo/química , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Metaloides/análisis , China , Medición de Riesgo
9.
Biol Reprod ; 107(1): 339-348, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35774025

RESUMEN

Embryo implantation is one of the hottest topics during female reproduction since it is the first dialogue between maternal uterus and developing embryo whose disruption will contribute to adverse pregnancy outcome. Numerous achievements have been made to decipher the underlying mechanism of embryo implantation by genetic and molecular approaches accompanied with emerging technological advances. In recent decades, raising concepts incite insightful understanding on the mechanism of reciprocal communication between implantation competent embryos and receptive uterus. Enlightened by these gratifying evolvements, we aim to summarize and revisit current progress on the critical determinants of mutual communication between maternal uterus and embryonic signaling on the perspective of embryo implantation to alleviate infertility, enhance fetal health, and improve contraceptive design.


Asunto(s)
Implantación del Embrión , Útero , Implantación del Embrión/genética , Embrión de Mamíferos , Femenino , Humanos , Embarazo , Resultado del Embarazo , Transducción de Señal/genética
10.
Mol Phylogenet Evol ; 166: 107318, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34562575

RESUMEN

Cryptocercus Scudder, a genus of wingless, subsocial cockroaches, has low vagility but exhibits a disjunct distribution in eastern and western North America, and in China, South Korea and the Russian Far East. This distribution provides an ideal model for testing hypotheses of vicariance through plate tectonics or other natural barriers versus dispersal across oceans or other natural barriers. We sequenced 45 samples of Cryptocercus to resolve phylogenetic relationships among members of the genus worldwide. We identified four types of tRNA rearrangements among samples from the Qin-Daba Mountains. Our maximum-likelihood and Bayesian phylogenetic trees, based on mitochondrial genomes and nuclear genes (18S, 28S), strongly supported six major lineages of Cryptocercus, which displayed a clear geographical distribution pattern. We used Bayesian molecular dating to estimate the evolutionary timescale of the genus, and reconstructed Cryptocercus ancestral ranges using statistical dispersal-vicariance analysis (S-DIVA) in RASP. Two dispersal events and six vicariance events for Cryptocercus were inferred with high support. The initial vicariance event occurred between American and Asian lineages at 80.5 Ma (95% credibility interval: 60.0-104.7 Ma), followed by one vicariance event within the American lineage 43.8 Ma (95% CI: 32.0-57.5 Ma), and two dispersal 31.9 Ma (95% CI: 25.8-39.5 Ma), 21.7 Ma (95% CI: 17.3-27.1 Ma) plus four vicariance events c. 29.3 Ma, 27.2 Ma, 24.8 Ma and 16.7 Ma within the Asian lineage. Our analyses provide evidence that both vicariance and dispersal have played important roles in shaping the distribution and diversity of these woodroaches.


Asunto(s)
Cucarachas , Genoma Mitocondrial , Animales , Teorema de Bayes , Evolución Biológica , Filogenia , Filogeografía
11.
Org Biomol Chem ; 20(32): 6275-6292, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35861153

RESUMEN

Transition-metal-catalysed C-H functionalization has emerged as a powerful approach for the transformation of organic molecules due to its high atom and step economy. Palladium-catalysed intermolecular C-H annulation of aryl halides, especially those involving annulation of a five-membered C,C-palladacycle with coupling reagents, have attracted considerable attention in the past decades. This review summarizes the progress on palladium-catalysed intermolecular C-H annulation of aryl halides with various aromatic ring precursors. Mechanistically, five-membered C,C-palladacycles as intermediates are involved in the majority of reactions.


Asunto(s)
Paladio , Catálisis , Indicadores y Reactivos
12.
Exp Cell Res ; 405(2): 112715, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34217714

RESUMEN

The mammalian placenta consists of a set of cells to ensure normal placental functions throughout gestation. Dysfunctional placentae are considered as the origin of a series of pregnancy complications. Therefore, it is urgent for detailed information about the molecular recipes of the cell types within the normal placenta. In the past years, gene expression analysis via single-cell RNA-seq (scRNA-seq) offers opportunities to identify new cell types in a variety of organs and tissues. In this study, scRNA-seq was used to explore the cell heterogeneity within the E10.5 mouse placenta and unravel their discrepancies in cell composition and communications. We identified sixteen cell clusters, including some cell clusters that originated from the maternal tissue. Moreover, we traced the developmental trajectories of trophoblasts and Hofbauer-like cells. Further analysis revealed cell connections between the endothelial cells and pericytes, syncytiotrophoblasts, as well as decidual cells. Besides, we highlighted several signaling pathways, such as the EGF, FGF, canonical, and non-canonical WNT signaling pathways, which mediated the potential crosstalk between different cell types within placenta. Our research provides an in-depth understanding of placental development, cellular composition, and communications at the maternal-fetal interface.


Asunto(s)
Células Endoteliales/citología , Placenta/metabolismo , Complicaciones del Embarazo/metabolismo , ARN/metabolismo , Animales , Femenino , Expresión Génica/fisiología , Perfilación de la Expresión Génica/métodos , Ratones , Embarazo , Análisis de la Célula Individual/métodos , Trofoblastos/metabolismo
13.
BMC Biol ; 18(1): 151, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109217

RESUMEN

BACKGROUND: Wnt signaling is a critical determinant for the maintenance and differentiation of stem/progenitor cells, including trophoblast stem cells during placental development. Hyperactivation of Wnt signaling has been shown to be associated with human trophoblast diseases. However, little is known about the impact and underlying mechanisms of excessive Wnt signaling during placental trophoblast development. RESULTS: In the present work, we observed that two inhibitors of Wnt signaling, secreted frizzled-related proteins 1 and 5 (Sfrp1 and Sfrp5), are highly expressed in the extraembryonic trophoblast suggesting possible roles in early placental development. Sfrp1 and Sfrp5 double knockout mice exhibited disturbed trophoblast differentiation in the placental ectoplacental cone (EPC), which contains the precursors of trophoblast giant cells (TGCs) and spongiotrophoblast cells. In addition, we employed mouse models expressing a truncated ß-catenin with exon 3 deletion globally and trophoblast-specifically, as well as trophoblast stem cell lines, and unraveled that hyperactivation of canonical Wnt pathway exhausted the trophoblast precursor cells in the EPC, resulting in the overabundance of giant cells at the expense of spongiotrophoblast cells. Further examination uncovered that hyperactivation of canonical Wnt pathway disturbed trophoblast differentiation in the EPC via repressing Ascl2 expression. CONCLUSIONS: Our investigations provide new insights that the homeostasis of canonical Wnt-ß-catenin signaling is essential for EPC trophoblast differentiation during placental development, which is of high clinical relevance, since aberrant Wnt signaling is often associated with trophoblast-related diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Proteínas de la Membrana/genética , Trofoblastos/metabolismo , Vía de Señalización Wnt/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Femenino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados
14.
Environ Res ; 185: 109475, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32272290

RESUMEN

Lead (Pb) isotopic composition analysis is a useful tool to accurately identify the origin of Pb in environmental media. The existing calculation method of the contribution of Pb sources from Pb isotope ratios greatly restricted the development of Pb contamination source apportionment. In the present study, a new distance model for calculating the mass proportion of Pb sources, which is based on the distance between the samples and the possible Pb sources in the Pb isotope ratios plot, was presented. The inverse distance model was applied to calculate the contribution proportion of two Pb sources in three previous studies. The average absolute differences between the proportions calculated by the conventional binary mixing equation and the inverse distance model were 0.21%, 1% and 1.9%, respectively, indicating that the new model agreeably calculated the contribution of two Pb sources. The anthropogenic sources proportion (52%) calculated by the inverse distance model of three Pb sources to park soil Pb in Shanghai was comparable to the result that was calculated by the conventional ternary mixing equation (53%), which showed the validity of the new model in calculating the contribution proportion of three Pb sources. Rational results were obtained by the inverse distance model in calculating the contribution of four Pb sources, illustrating that the new model has potential use in calculating the apportionment of four or more Pb sources. These results suggest that the inverse distance model is a simple and efficient approach for calculating the contribution proportion of various Pb contamination sources, and provides a prospective in the study of this field.


Asunto(s)
Monitoreo del Ambiente , Contaminantes del Suelo , China , Isótopos/análisis , Plomo , Estudios Prospectivos , Suelo , Contaminantes del Suelo/análisis
15.
Sensors (Basel) ; 20(6)2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32204506

RESUMEN

Since Synthetic Aperture Radar (SAR) targets are full of coherent speckle noise, the traditional deep learning models are difficult to effectively extract key features of the targets and share high computational complexity. To solve the problem, an effective lightweight Convolutional Neural Network (CNN) model incorporating transfer learning is proposed for better handling SAR targets recognition tasks. In this work, firstly we propose the Atrous-Inception module, which combines both atrous convolution and inception module to obtain rich global receptive fields, while strictly controlling the parameter amount and realizing lightweight network architecture. Secondly, the transfer learning strategy is used to effectively transfer the prior knowledge of the optical, non-optical, hybrid optical and non-optical domains to the SAR target recognition tasks, thereby improving the model's recognition performance on small sample SAR target datasets. Finally, the model constructed in this paper is verified to be 97.97% on ten types of MSTAR datasets under standard operating conditions, reaching a mainstream target recognition rate. Meanwhile, the method presented in this paper shows strong robustness and generalization performance on a small number of randomly sampled SAR target datasets.

16.
Proc Natl Acad Sci U S A ; 113(50): E8079-E8088, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911818

RESUMEN

Blastocyst implantation is a complex process requiring coordination of a dynamic sequence of embryo-uterine interactions. Blood vessels enter the uterus from the mesometrium, demarcating the uterus into mesometrial (M) and antimesometrial (AM) domains. Implantation occurs along the uterine longitudinal axis within specialized implantation chambers (crypts) that originate within the evaginations directed from the primary lumen toward the AM domain. The morphological orientation of crypts in rodent uteri was recognized more than a century ago, but the mechanism remained unknown. Here we provide evidence that planar cell polarity (PCP) signaling orchestrates directed epithelial evaginations to form crypts for implantation in mice. Uterine deletion of Vang-like protein 2, but not Vang-like protein 1, conferred aberrant PCP signaling, misdirected epithelial evaginations, defective crypt formation, and blastocyst attachment, leading to severely compromised pregnancy outcomes. The study reveals a previously unrecognized role for PCP in executing spatial cues for crypt formation and implantation. Because PCP is an evolutionarily conserved phenomenon, our study is likely to inspire implantation studies of this signaling pathway in humans and other species.


Asunto(s)
Polaridad Celular/fisiología , Implantación del Embrión/fisiología , Útero/fisiología , Animales , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Comunicación Celular/fisiología , Proteínas Dishevelled/fisiología , Epitelio/anatomía & histología , Epitelio/fisiología , Femenino , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Embarazo , Resultado del Embarazo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/deficiencia , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/fisiología , Transducción de Señal/fisiología , Útero/anatomía & histología , Proteína Wnt-5a/deficiencia , Proteína Wnt-5a/genética , Proteína Wnt-5a/fisiología
17.
Biol Reprod ; 98(2): 208-217, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29228105

RESUMEN

Premature decidual senescence is a contributing factor to preterm birth. Fatty acid amide hydrolase mutant females (Faah-/-) with higher endocannabinoid levels are also more susceptible to preterm birth upon lipopolysaccharide (LPS) challenge due to enhanced decidual senescence; this is associated with mitogen-activated protein kinase p38 activation. Previous studies have shown that mechanistic target of rapamycin complex 1 (mTORC1) contributes to decidual senescence and promotes the incidence of preterm birth. In this study, we sought to attenuate premature decidual aging in Faah-/- females by targeting mTORC1 and p38 signaling pathways. Because metformin is known to inhibit mTOR and p38 signaling pathways, Faah-/- females were treated with metformin. These mice had a significantly lower preterm birth incidence with a higher rate of live birth after an LPS challenge on day 16 of pregnancy; metformin treatment did not affect placentation or neonatal birth weight. These results were associated with decreased levels of p38, as well as pS6, a downstream mediator of mTORC1 activity, in day 16 Faah-/-decidual tissues. Since metformin treatment attenuates premature decidual senescence with limited side effects during pregnancy, careful use of this drug may be effective in ameliorating specific adverse pregnancy events.


Asunto(s)
Decidua/efectos de los fármacos , Endocannabinoides/sangre , Hipoglucemiantes/uso terapéutico , Inflamación/complicaciones , Metformina/uso terapéutico , Nacimiento Prematuro/prevención & control , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Decidua/metabolismo , Femenino , Hipoglucemiantes/farmacología , Inflamación/inducido químicamente , Lipopolisacáridos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metformina/farmacología , Ratones , Ratones Noqueados , Placentación/efectos de los fármacos , Embarazo , Nacimiento Prematuro/etiología , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
J Biol Chem ; 291(15): 8231-40, 2016 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-26900150

RESUMEN

Recent studies provide evidence that premature maternal decidual senescence resulting from heightened mTORC1 signaling is a cause of preterm birth (PTB). We show here that mice devoid of fatty acid amide hydrolase (FAAH) with elevated levels ofN-arachidonyl ethanolamide (anandamide), a major endocannabinoid lipid mediator, were more susceptible to PTB upon lipopolysaccharide (LPS) challenge. Anandamide is degraded by FAAH and primarily works by activating two G-protein-coupled receptors CB1 and CB2, encoded by Cnr1 and Cnr2, respectively. We found thatFaah(-/-)decidual cells progressively underwent premature senescence as marked by increased senescence-associated ß-galactosidase (SA-ß-Gal) staining and γH2AX-positive decidual cells. Interestingly, increased endocannabinoid signaling activated MAPK p38, but not p42/44 or mTORC1 signaling, inFaah(-/-)deciduae, and inhibition of p38 halted premature decidual senescence. We further showed that treatment of a long-acting anandamide in wild-type mice at midgestation triggered premature decidual senescence utilizing CB1, since administration of a CB1 antagonist greatly reduced the rate of PTB inFaah(-/-)females exposed to LPS. These results provide evidence that endocannabinoid signaling is critical in regulating decidual senescence and parturition timing. This study identifies a previously unidentified pathway in decidual senescence, which is independent of mTORC1 signaling.


Asunto(s)
Ácidos Araquidónicos/inmunología , Endocannabinoides/inmunología , Inflamación/complicaciones , Alcamidas Poliinsaturadas/inmunología , Nacimiento Prematuro/etiología , Nacimiento Prematuro/inmunología , Amidohidrolasas/genética , Amidohidrolasas/inmunología , Animales , Células Cultivadas , Decidua/citología , Decidua/inmunología , Femenino , Eliminación de Gen , Inflamación/genética , Inflamación/inmunología , Lipopolisacáridos/inmunología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Nacimiento Prematuro/genética , Transducción de Señal
19.
FASEB J ; 30(4): 1425-35, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26667042

RESUMEN

Embryo implantation requires that the uterus differentiate into the receptive state. Failure to attain uterine receptivity will impede blastocyst attachment and result in a compromised pregnancy. The molecular mechanism by which the uterus transitions from the prereceptive to the receptive stage is complex, involving an intricate interplay of various molecules. We recently found that mice with uterine deletion ofMsxgenes (Msx1(d/d)/Msx2(d/d)) are infertile because of implantation failure associated with heightened apicobasal polarity of luminal epithelial cells during the receptive period. However, information on Msx's roles in regulating epithelial polarity remains limited. To gain further insight, we analyzed cell-type-specific gene expression by RNA sequencing of separated luminal epithelial and stromal cells by laser capture microdissection fromMsx1(d/d)/Msx2(d/d)and floxed mouse uteri on d 4 of pseudopregnancy. We found that claudin-1, a tight junction protein, and small proline-rich (Sprr2) protein, a major component of cornified envelopes in keratinized epidermis, were substantially up-regulated inMsx1(d/d)/Msx2(d/d)uterine epithelia. These factors also exhibited unique epithelial expression patterns at the implantation chamber (crypt) inMsx1(f/f)/Msx2(f/f)females; the patterns were lost inMsx1(d/d)/Msx2(d/d)epithelia on d 5, suggesting important roles during implantation. The results suggest thatMsxgenes play important roles during uterine receptivity including modulation of epithelial junctional activity.-Sun, X., Park, C. B., Deng, W., Potter, S. S., Dey, S. K. Uterine inactivation of muscle segment homeobox (Msx) genes alters epithelial cell junction proteins during embryo implantation.


Asunto(s)
Claudina-1/genética , Implantación del Embrión , Células Epiteliales/metabolismo , Proteínas de Homeodominio/genética , Factor de Transcripción MSX1/genética , Útero/metabolismo , Animales , Claudina-1/metabolismo , Proteínas Ricas en Prolina del Estrato Córneo/genética , Proteínas Ricas en Prolina del Estrato Córneo/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes/genética , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Factor de Transcripción MSX1/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Arch Environ Contam Toxicol ; 71(4): 500-508, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27663602

RESUMEN

Economic reforms in China since 1978 have promoted nationwide socioeconomic advancement but led to a considerable amount of environmental pollution. The distribution and sources of Pb in a typical peri-urban industrial part of Baoji, China, were assessed by determining the Pb contents and isotopic compositions in 52 topsoil samples from the study area. The topsoil samples were polluted averagely with 40.88 mg Pb kg-1, was 1.86 times higher than the Pb content of local background soil (22.04 mg kg-1). Pb isotopic compositions were determined by analyzing samples prepared using total digestion and acid extraction methods. Radiogenic isotopes contributed more to the Pb concentrations in the acid extracts than in the total digests. This was shown by the 207/206Pb and 208/206Pb ratios, which were 0.845-0.88 and 2.088-2.128, respectively, in the acid extracts and 0.841-0.875 and 2.086-2.125, respectively, in the total digests. This indicates that anthropogenic sources of Pb could be identified more sensitively in acid extracts than in total digests. The Pb isotope ratios showed that burning coal and smelting ore are the predominant anthropogenic sources of Pb in the study area, i.e., a lead-zinc smelter and a coking plant are major sources of Pb in the study area.


Asunto(s)
Monitoreo del Ambiente , Plomo/análisis , Metalurgia , Contaminantes del Suelo/análisis , China , Ciudades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA