Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Circulation ; 143(16): 1597-1613, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33590773

RESUMEN

BACKGROUND: MicroRNAs (miRs) play critical roles in regulation of numerous biological events, including cardiac electrophysiology and arrhythmia, through a canonical RNA interference mechanism. It remains unknown whether endogenous miRs modulate physiologic homeostasis of the heart through noncanonical mechanisms. METHODS: We focused on the predominant miR of the heart (miR1) and investigated whether miR1 could physically bind with ion channels in cardiomyocytes by electrophoretic mobility shift assay, in situ proximity ligation assay, RNA pull down, and RNA immunoprecipitation assays. The functional modulations of cellular electrophysiology were evaluated by inside-out and whole-cell patch clamp. Mutagenesis of miR1 and the ion channel was used to understand the underlying mechanism. The effect on the heart ex vivo was demonstrated through investigating arrhythmia-associated human single nucleotide polymorphisms with miR1-deficient mice. RESULTS: We found that endogenous miR1 could physically bind with cardiac membrane proteins, including an inward-rectifier potassium channel Kir2.1. The miR1-Kir2.1 physical interaction was observed in mouse, guinea pig, canine, and human cardiomyocytes. miR1 quickly and significantly suppressed IK1 at sub-pmol/L concentration, which is close to endogenous miR expression level. Acute presence of miR1 depolarized resting membrane potential and prolonged final repolarization of the action potential in cardiomyocytes. We identified 3 miR1-binding residues on the C-terminus of Kir2.1. Mechanistically, miR1 binds to the pore-facing G-loop of Kir2.1 through the core sequence AAGAAG, which is outside its RNA interference seed region. This biophysical modulation is involved in the dysregulation of gain-of-function Kir2.1-M301K mutation in short QT or atrial fibrillation. We found that an arrhythmia-associated human single nucleotide polymorphism of miR1 (hSNP14A/G) specifically disrupts the biophysical modulation while retaining the RNA interference function. It is remarkable that miR1 but not hSNP14A/G relieved the hyperpolarized resting membrane potential in miR1-deficient cardiomyocytes, improved the conduction velocity, and eliminated the high inducibility of arrhythmia in miR1-deficient hearts ex vivo. CONCLUSIONS: Our study reveals a novel evolutionarily conserved biophysical action of endogenous miRs in modulating cardiac electrophysiology. Our discovery of miRs' biophysical modulation provides a more comprehensive understanding of ion channel dysregulation and may provide new insights into the pathogenesis of cardiac arrhythmias.


Asunto(s)
Canales Iónicos/metabolismo , Potenciales de la Membrana/fisiología , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Perros , Cobayas , Humanos , Ratones
2.
JACC Clin Electrophysiol ; 10(7 Pt 1): 1271-1286, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38752959

RESUMEN

BACKGROUND: Ventricular tachycardia (VT)/ventricular fibrillation (VF) rearrest after successful resuscitation is common, and survival is poor. A mechanism of VT/VF, as demonstrated in ex vivo studies, is when repolarization alternans becomes spatially discordant (DIS ALT), which can be enhanced by impaired gap junctions (GJs). However, in vivo spontaneous DIS ALT-induced VT/VF has never been demonstrated, and the effects of GJ on DIS ALT and VT/VF rearrest are unknown. OBJECTIVES: This study aimed to determine whether spontaneous VT/VF rearrest induced by DIS ALT occurs in vivo, and if it can be suppressed by preserving Cx43-mediated GJ coupling and/or connectivity. METHODS: We used an in vivo porcine model of resuscitation from ischemia-induced cardiac arrest combined with ex vivo optical mapping in porcine left ventricular wedge preparations. RESULTS: In vivo, DIS ALT frequently preceded VT/VF and paralleled its incidence at normal (37°C, n = 9) and mild hypothermia (33°C, n = 8) temperatures. Maintaining GJs in vivo with rotigaptide (n = 10) reduced DIS ALT and VT/VF incidence, especially during mild hypothermia, by 90% and 60%, respectively (P < 0.001; P < 0.013). Ex vivo, both rotigaptide (n = 5) and αCT11 (n = 7), a Cx43 mimetic peptide that promotes GJ connectivity, significantly reduced DIS ALT by 60% and 100%, respectively (P < 0.05; P < 0.005), and this reduction was associated with reduced intrinsic heterogeneities of action potential duration rather than changes in conduction velocity restitution. CONCLUSIONS: These results provide the strongest in vivo evidence to date suggesting a causal relationship between spontaneous DIS ALT and VT/VF in a clinically realistic scenario. Furthermore, our results suggest that preserving GJs during resuscitation can suppress VT/VF rearrest.


Asunto(s)
Conexina 43 , Uniones Comunicantes , Taquicardia Ventricular , Fibrilación Ventricular , Animales , Uniones Comunicantes/fisiología , Porcinos , Fibrilación Ventricular/fisiopatología , Taquicardia Ventricular/fisiopatología , Taquicardia Ventricular/etiología , Conexina 43/metabolismo , Paro Cardíaco/fisiopatología , Paro Cardíaco/complicaciones , Paro Cardíaco/terapia , Oligopéptidos/farmacología , Potenciales de Acción/fisiología , Modelos Animales de Enfermedad , Masculino , Femenino
3.
Mol Pharmacol ; 81(2): 198-209, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22046004

RESUMEN

Pentamidine is an antiprotozoal compound that clinically causes acquired long QT syndrome (acLQTS), which is associated with prolonged QT intervals, tachycardias, and sudden cardiac arrest. Pentamidine delays terminal repolarization in human heart by acutely blocking cardiac inward rectifier currents. At the same time, pentamidine reduces surface expression of the cardiac potassium channel I(Kr)/human ether à-go-go-related gene (hERG). This is unusual in that acLQTS is caused most often by direct block of the cardiac potassium current I(Kr)/hERG. The present study was designed to provide a more complete picture of how hERG surface expression is disrupted by pentamidine at the cellular and molecular levels. Using biochemical and electrophysiological methods, we found that pentamidine exclusively inhibits hERG export from the endoplasmic reticulum to the cell surface in a heterologous expression system as well as in cardiomyocytes. hERG trafficking inhibition could be rescued in the presence of the pharmacological chaperone astemizole. We used rescue experiments in combination with an extensive mutational analysis to locate an interaction site for pentamidine at phenylalanine 656, a crucial residue in the canonical drug binding site of terminally folded hERG. Our data suggest that pentamidine binding to a folding intermediate of hERG arrests channel maturation in a conformational state that cannot be exported from the endoplasmic reticulum. We propose that pentamidine is the founding member of a novel pharmacological entity whose members act as small molecule antichaperones.


Asunto(s)
Antiprotozoarios/farmacología , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Pentamidina/farmacología , Sitios de Unión , Retículo Endoplásmico/metabolismo , Humanos , Síndrome de QT Prolongado/etiología , Chaperonas Moleculares/antagonistas & inhibidores , Conformación Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Relación Estructura-Actividad
4.
J Biol Chem ; 286(39): 34413-25, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21832094

RESUMEN

The most common cause for adverse cardiac events by antidepressants is acquired long QT syndrome (acLQTS), which produces electrocardiographic abnormalities that have been associated with syncope, torsade de pointes arrhythmias, and sudden cardiac death. acLQTS is often caused by direct block of the cardiac potassium current I(Kr)/hERG, which is crucial for terminal repolarization in human heart. Importantly, desipramine belongs to a group of tricyclic antidepressant compounds that can simultaneously block hERG and inhibit its surface expression. Although up to 40% of all hERG blockers exert combined hERG block and trafficking inhibition, few of these compounds have been fully characterized at the cellular level. Here, we have studied in detail how desipramine inhibits hERG surface expression. We find a previously unrecognized combination of two entirely different mechanisms; desipramine increases hERG endocytosis and degradation as a consequence of drug-induced channel ubiquitination and simultaneously inhibits hERG forward trafficking from the endoplasmic reticulum. This unique combination of cellular effects in conjunction with acute channel block may explain why tricyclic antidepressants as a compound class are notorious for their association with arrhythmias and sudden cardiac death. Taken together, we describe the first example of drug-induced channel ubiquitination and degradation. Our data are directly relevant to the cardiac safety of not only tricyclic antidepressants but also other therapeutic compounds that exert multiple effects on hERG, as hERG trafficking and degradation phenotypes may go undetected in most preclinical safety assays designed to screen for acLQTS.


Asunto(s)
Antidepresivos Tricíclicos/farmacología , Desipramina/farmacología , Retículo Endoplásmico/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo , Síndrome de QT Prolongado/metabolismo , Ubiquitinación/efectos de los fármacos , Animales , Canal de Potasio ERG1 , Endocitosis/efectos de los fármacos , Retículo Endoplásmico/genética , Canales de Potasio Éter-A-Go-Go/genética , Células HEK293 , Humanos , Síndrome de QT Prolongado/genética , Transporte de Proteínas/efectos de los fármacos , Ratas
5.
J Biol Chem ; 286(4): 2843-52, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21097842

RESUMEN

The most common cause of cardiac side effects of pharmaco-therapy is acquired long QT syndrome, which is characterized by abnormal cardiac repolarization and most often caused by direct blockade of the cardiac potassium channel human ether a-go-go-related gene (hERG). However, little is known about therapeutic compounds that target ion channels other than hERG. We have discovered that arsenic trioxide (As(2)O(3)), a very potent antineoplastic compound for the treatment of acute promyelocytic leukemia, is proarrhythmic via two separate mechanisms: a well characterized inhibition of hERG/I(Kr) trafficking and a poorly understood increase of cardiac calcium currents. We have analyzed the latter mechanism in the present study using biochemical and electrophysiological methods. We find that oxidative inactivation of the lipid phosphatase PTEN by As(2)O(3) enhances cardiac calcium currents in the therapeutic concentration range via a PI3Kα-dependent increase in phosphatidylinositol 3,4,5-triphosphate (PIP(3)) production. In guinea pig ventricular myocytes, even a modest reduction in PTEN activity is sufficient to increase cellular PIP(3) levels. Under control conditions, PIP(3) levels are kept low by PTEN and do not affect calcium current amplitudes. Based on pharmacological experiments and intracellular infusion of PIP(3), we propose that in guinea pig ventricular myocytes, PIP(3) regulates calcium currents independently of the protein kinase Akt along a pathway that includes a secondary oxidation-sensitive target. Overall, our report describes a novel form of acquired long QT syndrome where the target modified by As(2)O(3) is an intracellular signaling cascade.


Asunto(s)
Antineoplásicos/efectos adversos , Arsenicales/efectos adversos , Calcio/metabolismo , Ventrículos Cardíacos/enzimología , Síndrome de QT Prolongado/enzimología , Miocitos Cardíacos/enzimología , Óxidos/efectos adversos , Fosfohidrolasa PTEN/metabolismo , Animales , Antineoplásicos/farmacología , Trióxido de Arsénico , Arsenicales/farmacología , Células Cultivadas , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/metabolismo , Cobayas , Humanos , Síndrome de QT Prolongado/inducido químicamente , Oxidación-Reducción/efectos de los fármacos , Óxidos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
6.
J Pers Med ; 12(10)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36294819

RESUMEN

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic disorder of desmosomal and structural proteins that is characterized by fibro-fatty infiltrate in the ventricles and fatal arrhythmia that can occur early before significant structural abnormalities. Most ARVC mutations interfere with ß-catenin-dependent transcription that enhances adipogenesis; however, the mechanistic pathway to arrhythmogenesis is not clear. We hypothesized that adipogenic conditions play an important role in the formation of arrhythmia substrates in ARVC. Cardiac myocyte monolayers co-cultured for 2-4 days with mesenchymal stem cells (MSC) were derived from human-induced pluripotent stem cells with the ARVC5 TMEM43 p.Ser358Leu mutation. The TMEM43 mutation in myocyte co-cultures alone had no significant effect on impulse conduction velocity (CV) or APD. In contrast, when co-cultures were exposed to pro-adipogenic factors for 2-4 days, CV and APD were significantly reduced compared to controls by 49% and 31%, respectively without evidence of adipogenesis. Additionally, these arrhythmia substrates coincided with a significant reduction in IGF-1 expression in MSCs and were mitigated by IGF-1 treatment. These findings suggest that the onset of enhanced adipogenic signaling may be a mechanism of early arrhythmogenesis, which could lead to personalized treatment for arrhythmias associated with TMEM43 and other ARVC mutations.

7.
Cells ; 10(7)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206684

RESUMEN

Direct cardiac reprogramming of fibroblasts into induced cardiomyocytes (iCMs) is a promising approach but remains a challenge in heart regeneration. Efforts have focused on improving the efficiency by understanding fundamental mechanisms. One major challenge is that the plasticity of cultured fibroblast varies batch to batch with unknown mechanisms. Here, we noticed a portion of in vitro cultured fibroblasts have been activated to differentiate into myofibroblasts, marked by the expression of αSMA, even in primary cell cultures. Both forskolin, which increases cAMP levels, and TGFß inhibitor SB431542 can efficiently suppress myofibroblast differentiation of cultured fibroblasts. However, SB431542 improved but forskolin blocked iCM reprogramming of fibroblasts that were infected with retroviruses of Gata4, Mef2c, and Tbx5 (GMT). Moreover, inhibitors of cAMP downstream signaling pathways, PKA or CREB-CBP, significantly improved the efficiency of reprogramming. Consistently, inhibition of p38/MAPK, another upstream regulator of CREB-CBP, also improved reprogramming efficiency. We then investigated if inhibition of these signaling pathways in primary cultured fibroblasts could improve their plasticity for reprogramming and found that preconditioning of cultured fibroblasts with CREB-CBP inhibitor significantly improved the cellular plasticity of fibroblasts to be reprogrammed, yielding ~2-fold more iCMs than untreated control cells. In conclusion, suppression of CREB-CBP signaling improves fibroblast plasticity for direct cardiac reprogramming.


Asunto(s)
Plasticidad de la Célula , Reprogramación Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Miocardio/citología , Fosfoproteínas/metabolismo , Transducción de Señal , Animales , Benzamidas/farmacología , Diferenciación Celular/efectos de los fármacos , Plasticidad de la Célula/efectos de los fármacos , Células Cultivadas , Reprogramación Celular/efectos de los fármacos , Colforsina/farmacología , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dioxoles/farmacología , Fibroblastos/efectos de los fármacos , Ratones Transgénicos , Miofibroblastos/citología , Miofibroblastos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo
8.
Sci Rep ; 11(1): 20570, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663875

RESUMEN

Chronic kidney disease (CKD) affects more than 20 million people in the US, and it is associated with a significantly increased risk of sudden cardiac death (SCD). Despite the significance, the mechanistic relationship between SCD and CKD is not clear and there are few effective therapies. Using optical mapping techniques, we tested the hypothesis that mouse models of progressive diabetic kidney disease (DKD) exhibit enhanced ventricular arrhythmia incidence and underlying arrhythmia substrates. Compared to wild-type mice, both Leprdb/db eNOS-/- (2KO) and high fat diet plus low dose streptozotocin (HFD + STZ) mouse models of DKD experienced sudden death and greater arrhythmia inducibility, which was more common with isoproterenol than programmed electrical stimulation. 2KO mice demonstrated slowed conduction velocity, prolonged action potential duration (APD), and myocardial fibrosis; both 2KO and HFD + STZ mice exhibited arrhythmias and calcium dysregulation with isoproterenol challenge. Finally, circulating concentrations of the uremic toxin asymmetric dimethylarginine (ADMA) were elevated in 2KO mice. Incubation of human cardiac myocytes with ADMA prolonged APD, as also observed in 2KO mice hearts ex vivo. The present study elucidates an arrhythmia-associated mechanism of sudden death associated with DKD, which may lead to more effective treatments in the vulnerable DKD patient population.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Nefropatías Diabéticas/fisiopatología , Potenciales de Acción/fisiología , Animales , Arritmias Cardíacas/patología , Complicaciones de la Diabetes/fisiopatología , Diabetes Mellitus/fisiopatología , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Frecuencia Cardíaca/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología , Taquicardia Ventricular/patología , Taquicardia Ventricular/fisiopatología , Imagen de Colorante Sensible al Voltaje/métodos
9.
Mol Pharmacol ; 75(4): 927-37, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19139152

RESUMEN

Several therapeutic compounds have been identified that prolong the QT interval on the electrocardiogram and cause torsade de pointes arrhythmias not by direct block of the cardiac potassium channel human ether-à-go-go-related gene (hERG) but via disruption of hERG trafficking to the cell surface membrane. One example of a clinically important compound class that potently inhibits hERG trafficking are cardiac glycosides. We have shown previously that inhibition of hERG trafficking by cardiac glycosides is initiated via direct block of Na(+)/K(+) pumps and not via off-target interactions with hERG or any other protein. However, it was not known how pump inhibition at the cell surface is coupled to hERG processing in the endoplasmic reticulum. Here, we show that depletion of intracellular K(+)-either indirectly after long-term exposure to cardiac glycosides or directly after exposure to gramicidin in low sodium media-is sufficient to disrupt hERG trafficking. In K(+)-depleted cells, hERG trafficking can be restored by permeating K(+) or Rb(+) ions, incubation at low temperature, exposure to the pharmacological chaperone astemizole, or specific mutations in the selectivity filter of hERG. Our data suggest a novel mechanism for drug-induced trafficking inhibition in which cardiac glycosides produce a [K(+)](i)-mediated conformational defect directly in the hERG channel protein.


Asunto(s)
Retículo Endoplásmico/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo , Líquido Intracelular/metabolismo , Potasio/metabolismo , Glicósidos Cardíacos/farmacología , Línea Celular , Relación Dosis-Respuesta a Droga , Retículo Endoplásmico/efectos de los fármacos , Humanos , Líquido Intracelular/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología
10.
Circ Res ; 92(12): e87-100, 2003 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-12775586

RESUMEN

The human ether-a-gogo-related gene (hERG) encodes the alpha subunit of the cardiac potassium current IKr. Several mutations in hERG produce trafficking-deficient channels that may cause hereditary long-QT syndrome and sudden cardiac death. Although hERG currents have been studied extensively, little is known about the proteins involved in maturation and trafficking of hERG. Using immunoprecipitations, we show that the cytosolic chaperones heat shock protein (Hsp) 70 and Hsp90, but not Grp94, interact with hERG wild type (WT) during maturation. The specific Hsp90 inhibitor geldanamycin prevents maturation and increases proteasomal degradation of hERG WT, while reducing hERG currents in heterologous expression systems. In ventricular myocytes, inhibition of Hsp90 also decreases IKr, whereas geldanamycin had no effect on IKs or heterologously expressed Kv2.1 and Kv1.5 currents. Both Hsp90 and Hsp70 interact directly with the core-glycosylated form of hERG WT present in the endoplasmic reticulum but not the fully glycosylated, cell-surface form. For the trafficking-deficient LQT2 mutants, hERG R752W and hERG G601S, interactions with Hsp90 and Hsp70 are increased as both mutants remained tightly associated with Hsp90 and Hsp70 in the endoplasmic reticulum. Incubation at lower temperature for R752W or with the hERG blocker astemizole for G601S dissociates channel-chaperone complexes and restores trafficking. In contrast, nonfunctional but trafficking-competent hERG G628S is released from chaperone complexes during maturation comparable to WT. We conclude that Hsp90 and Hsp70 are crucial for the maturation of hERG WT as well as the retention of trafficking-deficient LQT2 mutants. The full text of this article is available online at http://www.circresaha.org.


Asunto(s)
Proteínas de Transporte de Catión , Proteínas de Unión al ADN , Proteínas HSP70 de Choque Térmico/fisiología , Proteínas HSP90 de Choque Térmico/fisiología , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Transactivadores , Análisis de Varianza , Animales , Benzoquinonas , Células COS , Línea Celular , Células Cultivadas , Citosol/metabolismo , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go , Cobayas , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Células L , Lactamas Macrocíclicas , Potenciales de la Membrana/efectos de los fármacos , Ratones , Mutación , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Canales de Potasio/genética , Pruebas de Precipitina , Unión Proteica/efectos de los fármacos , Quinonas/farmacología , Factores de Tiempo , Regulador Transcripcional ERG , Transfección , Ubiquitina/metabolismo
11.
Br J Pharmacol ; 137(6): 892-900, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12411421

RESUMEN

1. The human HERG gene encodes the cardiac repolarizing K(+) current I(Kr) and is genetically inactivated in inherited long QT syndrome 2 (LQTS2). The antihistamine terfenadine blocks HERG channels, and can cause QT prolongation and torsades de pointes, whereas its carboxylate fexofenadine lacks HERG blocking activity. 2. In the present study the ability of fexofenadine to block the K897T HERG channel variant was investigated. The underlying single nucleotide polymorphism (SNP) A2960C was identified in a patient reported to develop fexofenadine-associated LQTS. 3. K897T HERG channels produced wild-type-like currents in Xenopus oocytes. Even at a concentration of 100 micro M, fexofenadine did not inhibit wild-type or K897T HERG channels. Coexpression of wild-type and K897T HERG with the ss-subunit MiRP1, slightly changed current kinetics but did not change sensitivity to terfenadine and fexofenadine. 4. Western blot analysis and immunostaining of transiently transfected COS-7 cells demonstrated that overall expression level, glycosylation pattern and subcellular localization of K897T HERG is indistinguishable from wild-type HERG protein, and not altered in the presence of 1 micro M fexofenadine. 5. We provide the first functional characterization of the K897T HERG variant. We demonstrated that K897T HERG is similar to wild-type HERG, and is insensitive to fexofenadine. Although the polymorphism changes PKA and PKC phosphorylation sites, regulation of K897T HERG by these kinases is not altered. 6. Our results strongly indicate that QT lengthening and cardiac arrhythmia in the reported case of drug-induced LQT are not due to the K897T exchange or to an inhibitory effect of fexofenadine on cardiac I(Kr) currents. British Journal of


Asunto(s)
Arritmias Cardíacas/genética , Proteínas de Transporte de Catión , Proteínas de Unión al ADN , Antagonistas de los Receptores Histamínicos H1/farmacología , Potenciales de la Membrana/efectos de los fármacos , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/fisiología , Terfenadina/análogos & derivados , Terfenadina/farmacología , Transactivadores , Anciano , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/fisiopatología , Secuencia de Bases , Western Blotting , Células COS , Línea Celular , Colforsina/farmacología , ADN/química , ADN/genética , Análisis Mutacional de ADN , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go , Genotipo , Antagonistas de los Receptores Histamínicos H1/efectos adversos , Antagonistas de los Receptores Histamínicos H1/uso terapéutico , Humanos , Inmunohistoquímica , Masculino , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Polimorfismo Conformacional Retorcido-Simple , Canales de Potasio/genética , Prurito/tratamiento farmacológico , Homología de Secuencia de Aminoácido , Terfenadina/efectos adversos , Terfenadina/uso terapéutico , Acetato de Tetradecanoilforbol/farmacología , Regulador Transcripcional ERG
12.
J Pharmacol Exp Ther ; 312(1): 316-23, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15340016

RESUMEN

The diamidine pentamidine is used to treat leishmaniasis, trypanosomiasis, and Pneumocystis carinii pneumonia. Treatment may be accompanied by prolongation of the QT interval of the electrocardiogram and torsades de pointes tachycardias. Up to now, it has been thought that therapeutic compounds causing QT prolongation are associated with direct block of the cardiac potassium channel human ether a-go-go-related gene (hERG), which encodes the alpha subunit of cardiac I(Kr) currents. We show that pentamidine has no acute effects on currents produced by hERG, KvLQT1/mink, Kv4.3, or SCNA5. Cardiac calcium currents and the guinea pig cardiac action potential were also not affected. After overnight exposure, however, pentamidine reduced hERG currents and inhibited trafficking and maturation of hERG with IC(50) values of 5 to 8 microM similar to therapeutic concentrations. Surface expression determined in a chemiluminescence assay was reduced on exposure to 10, 30, and 100 microM pentamidine by about 30, 40, and 70%, respectively. These effects were specific for hERG since expression of hKv1.5, KvLQT1/minK, and Kv4.3 was not altered. In isolated guinea pig ventricular myocytes, 10 microM pentamidine prolonged action potential duration APD(90) from 374.3 +/- 57.1 to 893.9 +/- 86.2 ms on overnight incubation. I(Kr) tail current density was reduced from 0.61 +/- 0.09 to 0.39 +/- 0.04 pA/pF. We conclude that pentamidine prolongs the cardiac action potential by block of hERG trafficking and reduction of the number of functional hERG channels at the cell surface. We propose that pentamidine, like arsenic trioxide, produces QT prolongation and torsades de pointes in patients by inhibition of hERG trafficking.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Síndrome de QT Prolongado , Miocitos Cardíacos/efectos de los fármacos , Pentamidina/farmacología , Canales de Potasio con Entrada de Voltaje/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Antifúngicos/farmacología , Transporte Biológico/efectos de los fármacos , Células CHO , Proteínas de Transporte de Catión/antagonistas & inhibidores , Células Cultivadas , Cricetinae , Electrofisiología , Canales de Potasio Éter-A-Go-Go , Cobayas , Humanos , Miocitos Cardíacos/fisiología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores
13.
Mol Pharmacol ; 66(1): 33-44, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15213294

RESUMEN

Arsenic trioxide (As(2)O(3)) produces dramatic remissions in patients with relapsed or refractory acute promyelocytic leukemia. Its clinical use is burdened by QT prolongation, torsade de pointes, and sudden cardiac death. In the present study, we analyzed the molecular mechanisms leading to As(2)O(3)-induced abnormalities of cardiac electrophysiology. Using biochemical and electrophysiological methods, we show that long-term exposure to As(2)O(3) increases cardiac calcium currents and reduces surface expression of the cardiac potassium channel human ether-a-go-go-related gene (HERG) at clinically relevant concentrations of 0.1 to 1.5 microM. In ventricular myocytes, As(2)O(3) increases action potential duration measured at 30 and 90% of repolarization. As(2)O(3) interferes with hERG trafficking by inhibition of hERG-chaperone complexes and increases calcium currents by a faster cellular process. We propose that an increase in cardiac calcium current and reduced trafficking of hERG channels to the cell surface cause QT prolongation and torsade de pointes in patients treated with As(2)O(3). Our results suggest that calcium-channel antagonists will be useful in normalizing QT prolongation during As(2)O(3) therapy. As(2)O(3) is the first example of a drug that produces hERG liability by inhibition of ion-channel trafficking. Other drugs that interfere with proteins in the processing pathway of cardiac ion channels may be proarrhythmic for similar reasons.


Asunto(s)
Arsenicales/farmacología , Corazón/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Óxidos/farmacología , Canales de Potasio/metabolismo , Animales , Trióxido de Arsénico , Calcio/fisiología , Electrofisiología , Inhibidores Enzimáticos/farmacología , Cobayas , Ventrículos Cardíacos/citología , Humanos , Miocitos Cardíacos/fisiología , Canales de Potasio/efectos de los fármacos , Canales de Potasio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA