Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Biotropica ; 56(1): 36-49, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38515454

RESUMEN

Determining how fully tropical forests regenerating on abandoned land recover characteristics of old-growth forests is increasingly important for understanding their role in conserving rare species and maintaining ecosystem services. Despite this, our understanding of forest structure and community composition recovery throughout succession is incomplete, as many tropical chronosequences do not extend beyond the first 50 years of succession. Here, we examined trajectories of forest recovery across eight 1-hectare plots in middle and later stages of forest succession (40-120 years) and five 1-hectare old-growth plots, in the Barro Colorado Nature Monument (BCNM), Panama. We first verified that forest age had a greater effect than edaphic or topographic variation on forest structure, diversity and composition and then corroborated results from smaller plots censused 20 years previously. Tree species diversity (but not species richness) and forest structure had fully recovered to old-growth levels by 40 and 90 years, respectively. However, rare species were missing, and old-growth specialists were in low abundance, in the mid- and late secondary forest plots, leading to incomplete recovery of species composition even by 120 years into succession. We also found evidence that dominance early in succession by a long-lived pioneer led to altered forest structure and delayed recovery of species diversity and composition well past a century after land abandonment. Our results illustrate the critical importance of old-growth and old secondary forests for biodiversity conservation, given that recovery of community composition may take several centuries, particularly when a long-lived pioneer dominates in early succession. Abstract in Spanish is available with online material.


Determinar en que medida los bosques tropicales que se regeneran en tierras abandonadas recuperan las características de los bosques primarios es cada vez más importante para comprender su papel en la conservación de especies raras y el mantenimiento de los servicios ecosistémicos. A pesar de ello, nuestro entendimiento sobre la recuperación de la estructura del bosque y la composición de la comunidad a lo largo de la sucesión es incompleta, ya que muchas cronosecuencias tropicales no van más allá de los primeros 50 años de sucesión. En este estudio, investigamos las trayectorias de recuperación del bosque en ocho parcelas de 1 hectárea en estadíos medios y tardíos de la sucesión forestal (40­120 años) y cinco parcelas de 1 hectárea de bosque primario, en el Monumento Natural Barro Colorado (MNBC), Panamá. En primer lugar, verificamos que la edad del bosque tenía un mayor efecto que la variación edáfica o topográfica en la estructura, diversidad y composición del bosque y luego corroboramos los resultados de parcelas más pequeñas estudiadas 20 años antes. La diversidad de especies arbóreas, pero no la riqueza de especies, y la estructura forestal se habían recuperado completamente hasta alcanzar los niveles de bosque primario a los 40 y 90 años, respectivamente. Sin embargo, los bosques secundarios carecían de especies raras y presentaban una escasa abundancia de especies especialistas del bosque antiguo, lo que condujo a una recuperación incompleta de la composición de especies, incluso a 120 años de sucesión. También encontramos pruebas de que el predominio de un pionero longevo en las primeras etapas de la sucesión provocó una alteración de la estructura forestal y retrasó la recuperación de la diversidad y composición de especies más allá de un siglo después el abandono de las tierras. Nuestros resultados ilustran la importancia crítica de los bosques primarios y secundarios más antiguos para la conservación de la biodiversidad, dado que la recuperación de la composición de la comunidad puede llevar varios siglos, especialmente cuando un pionero longevo domina en la sucesión temprana.

2.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845017

RESUMEN

One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here, we analyze functional recovery using community data on seven plant characteristics (traits) of 1,016 forest plots from 30 chronosequence sites across the Neotropics. By analyzing communities in terms of their traits, we enhance understanding of the mechanisms of succession, assess ecosystem recovery, and use these insights to propose successful forest restoration strategies. Wet and dry forests diverged markedly for several traits that increase growth rate in wet forests but come at the expense of reduced drought tolerance, delay, or avoidance, which is important in seasonally dry forests. Dry and wet forests showed different successional pathways for several traits. In dry forests, species turnover is driven by drought tolerance traits that are important early in succession and in wet forests by shade tolerance traits that are important later in succession. In both forests, deciduous and compound-leaved trees decreased with forest age, probably because microclimatic conditions became less hot and dry. Our results suggest that climatic water availability drives functional recovery by influencing the start and trajectory of succession, resulting in a convergence of community trait values with forest age when vegetation cover builds up. Within plots, the range in functional trait values increased with age. Based on the observed successional trait changes, we indicate the consequences for carbon and nutrient cycling and propose an ecologically sound strategy to improve forest restoration success.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Modelos Biológicos , Clima Tropical
3.
Nature ; 530(7589): 211-4, 2016 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-26840632

RESUMEN

Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.


Asunto(s)
Biomasa , Bosques , Árboles/crecimiento & desarrollo , Clima Tropical , Carbono/metabolismo , Ciclo del Carbono , Secuestro de Carbono , Ecología , Humedad , América Latina , Lluvia , Factores de Tiempo , Árboles/metabolismo
4.
Trends Ecol Evol ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39362801

RESUMEN

By recognizing the role of animals as restoration drivers, we have a unique opportunity to combine climate and biodiversity policy frameworks and meet targets synergistically. About 25% of forest restoration projects could benefit from animals contributing to both frameworks. In 50% of projects, active actions are needed to improve outcomes.

5.
Biol Rev Camb Philos Soc ; 99(3): 928-949, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38226776

RESUMEN

The core principle shared by most theories and models of succession is that, following a major disturbance, plant-environment feedback dynamics drive a directional change in the plant community. The most commonly studied feedback loops are those in which the regrowth of the plant community causes changes to the abiotic (e.g. soil nutrients) or biotic (e.g. dispersers) environment, which differentially affect species availability or performance. This, in turn, leads to shifts in the species composition of the plant community. However, there are many other PE feedback loops that potentially drive succession, each of which can be considered a model of succession. While plant-environment feedback loops in principle generate predictable successional trajectories, succession is generally observed to be highly variable. Factors contributing to this variability are the stochastic processes involved in feedback dynamics, such as individual mortality and seed dispersal, and extrinsic causes of succession, which are not affected by changes in the plant community but do affect species performance or availability. Both can lead to variation in the identity of dominant species within communities. This, in turn, leads to further contingencies if these species differ in their effect on their environment (priority effects). Predictability and variability are thus intrinsically linked features of ecological succession. We present a new conceptual framework of ecological succession that integrates the propositions discussed above. This framework defines seven general causes: landscape context, disturbance and land-use, biotic factors, abiotic factors, species availability, species performance, and the plant community. When involved in a feedback loop, these general causes drive succession and when not, they are extrinsic causes that create variability in successional trajectories and dynamics. The proposed framework provides a guide for linking these general causes into causal pathways that represent specific models of succession. Our framework represents a systematic approach to identifying the main feedback processes and causes of variation at different successional stages. It can be used for systematic comparisons among study sites and along environmental gradients, to conceptualise studies, and to guide the formulation of research questions and design of field studies. Mapping an extensive field study onto our conceptual framework revealed that the pathways representing the study's empirical outcomes and conceptual model had important differences, underlining the need to move beyond the conceptual models that currently dominate in specific fields and to find ways to examine the importance of and interactions among alternative causal pathways of succession. To further this aim, we argue for integrating long-term studies across environmental and anthropogenic gradients, combined with controlled experiments and dynamic modelling.


Asunto(s)
Ecosistema , Plantas , Modelos Biológicos , Desarrollo de la Planta/fisiología
6.
Ecology ; 105(7): e4321, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763891

RESUMEN

Secondary tropical forests play an increasingly important role in carbon budgets and biodiversity conservation. Understanding successional trajectories is therefore imperative for guiding forest restoration and climate change mitigation efforts. Forest succession is driven by the demographic strategies-combinations of growth, mortality and recruitment rates-of the tree species in the community. However, our understanding of demographic diversity in tropical tree species stems almost exclusively from old-growth forests. Here, we assembled demographic information from repeated forest inventories along chronosequences in two wet (Costa Rica, Panama) and two dry (Mexico) Neotropical forests to assess whether the ranges of demographic strategies present in a community shift across succession. We calculated demographic rates for >500 tree species while controlling for canopy status to compare demographic diversity (i.e., the ranges of demographic strategies) in early successional (0-30 years), late successional (30-120 years) and old-growth forests using two-dimensional hypervolumes of pairs of demographic rates. Ranges of demographic strategies largely overlapped across successional stages, and early successional stages already covered the full spectrum of demographic strategies found in old-growth forests. An exception was a group of species characterized by exceptionally high mortality rates that was confined to early successional stages in the two wet forests. The range of demographic strategies did not expand with succession. Our results suggest that studies of long-term forest monitoring plots in old-growth forests, from which most of our current understanding of demographic strategies of tropical tree species is derived, are surprisingly representative of demographic diversity in general, but do not replace the need for further studies in secondary forests.


Asunto(s)
Bosques , Árboles , Clima Tropical , Panamá , México , Costa Rica , Biodiversidad
7.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210076, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373921

RESUMEN

Seed dispersal by animals is key for restoration of tropical forests because it maintains plant diversity and accelerates community turnover. Therefore, changes in seed dispersal during forest restoration can indicate the recovery of species interactions, and yet these changes are rarely considered in forest restoration planning. In this study, we examined shifts in the importance of different seed dispersal modes during passive restoration in a tropical chronosequence spanning more than 100 years, by modelling the proportion of trees dispersed by bats, small birds, large birds, flightless mammals and abiotic means as a function of forest age. Contrary to expectations, tree species dispersed by flightless mammals dominated after 20 years of regeneration, and tree richness and abundance dispersed by each mode mostly recovered to old growth levels between 40 and 70 years post-abandonment. Seed dispersal by small birds declined over time during regeneration, while bat dispersal played a minor role throughout all stages of succession. Results suggest that proximity to old growth forests, coupled with low hunting, explained the prevalence of seed dispersal by animals, especially by flightless mammals at this site. We suggest that aspects of seed dispersal should be monitored when restoring forest ecosystems to evaluate the reestablishment of species interactions. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Asunto(s)
Quirópteros , Dispersión de Semillas , Animales , Ecosistema , Bosques , Árboles , Semillas , Aves , Clima Tropical
8.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210074, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373919

RESUMEN

The recovery of soil conditions is crucial for successful ecosystem restoration and, hence, for achieving the goals of the UN Decade on Ecosystem Restoration. Here, we assess how soils resist forest conversion and agricultural land use, and how soils recover during subsequent tropical forest succession on abandoned agricultural fields. Our overarching question is how soil resistance and recovery depend on local conditions such as climate, soil type and land-use history. For 300 plots in 21 sites across the Neotropics, we used a chronosequence approach in which we sampled soils from two depths in old-growth forests, agricultural fields (i.e. crop fields and pastures), and secondary forests that differ in age (1-95 years) since abandonment. We measured six soil properties using a standardized sampling design and laboratory analyses. Soil resistance strongly depended on local conditions. Croplands and sites on high-activity clay (i.e. high fertility) show strong increases in bulk density and decreases in pH, carbon (C) and nitrogen (N) during deforestation and subsequent agricultural use. Resistance is lower in such sites probably because of a sharp decline in fine root biomass in croplands in the upper soil layers, and a decline in litter input from formerly productive old-growth forest (on high-activity clays). Soil recovery also strongly depended on local conditions. During forest succession, high-activity clays and croplands decreased most strongly in bulk density and increased in C and N, possibly because of strongly compacted soils with low C and N after cropland abandonment, and because of rapid vegetation recovery in high-activity clays leading to greater fine root growth and litter input. Furthermore, sites at low precipitation decreased in pH, whereas sites at high precipitation increased in N and decreased in C : N ratio. Extractable phosphorus (P) did not recover during succession, suggesting increased P limitation as forests age. These results indicate that no single solution exists for effective soil restoration and that local site conditions should determine the restoration strategies. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Arcilla , Bosques , Carbono
9.
Funct Ecol ; 36(12): 3175-3187, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37064076

RESUMEN

Regenerating tropical forests are increasingly important for their role in the global carbon cycle. Carbon stocks in above-ground biomass can recover to old-growth forest levels within 60-100 years. However, more than half of all carbon in tropical forests is stored below-ground, and our understanding of carbon storage in soils during tropical forest recovery is limited.Importantly, soil carbon accumulation does not necessarily reflect patterns in above-ground biomass carbon accrual during secondary forest succession, and factors related to past land use, species composition and soil characteristics may influence soil carbon storage during forest regrowth.Using tree census data and a measure of tree community shade tolerance (species-specific light response values), we assessed the relationship between soil organic carbon stocks and tree functional groups during secondary succession along a chronosequence of 40- to 120-year-old naturally regenerating secondary forest and old-growth tropical forest stands in Panama.While previous studies found no evidence for increasing soil C storage with secondary forest age, we found a strong relationship between tree functional composition and soil carbon stocks at 0-10 cm depth, whereby carbon stocks increased with the relative influence of light-demanding tree species. Light demanding trees had higher leaf nitrogen but lower leaf density than shade-tolerant trees, suggesting that rapid decomposition of nutrient-rich plant material in forests with a higher proportion of light-demanding species results in greater accumulation of carbon in the surface layer of soils. Synthesis. We propose that soil carbon storage in secondary tropical forests is more strongly linked to tree functional composition than forest age, and that the persistence of long-lived pioneer trees could enhance soil carbon storage as forests age. Considering shifts in tree functional groups could improve estimates of carbon sequestration potential for climate change mitigation by tropical forest regrowth. Read the free Plain Language Summary for this article on the Journal blog.


Los bosques tropicales en regeneración son cada vez más importantes por su papel en el ciclo global del carbono. Las reservas de carbono en la biomasa aérea pueden recuperarse hasta los niveles de los bosques maduros en un plazo de 60 a 100 años. Sin embargo, más de la mitad de todo el carbono en los bosques tropicales se almacena bajo tierra, y nuestra comprensión del almacenamiento de carbono en los suelos durante la recuperación de los bosques tropicales es limitada.Es importante señalar que la acumulación de carbono en el suelo no refleja necesariamente los patrones de acumulación de carbono en la biomasa aérea durante la sucesión de bosques secundarios y los factores relacionados con el uso pasado del terreno, la composición de especies y las características del suelo pueden influir en el almacenamiento de carbono en el suelo durante la regeneración del bosque.Usando datos del censo de árboles y una medida de la tolerancia a la sombra de la comunidad de árboles (valores de respuesta a la luz específicos de la especie), evaluamos la relación entre las reservas de carbono orgánico del suelo y los grupos funcionales de los árboles durante la sucesión secundaria a lo largo de una cronosecuencia de 40 a 120 años bosques secundarios de regeneración natural y rodales de bosques tropicales primarios en Panamá.Mientras que estudios previos no encontraron evidencia de un aumento del almacenamiento de C en el suelo con la edad del bosque secundario, encontramos una fuerte relación entre la composición funcional de los árboles y las reservas de carbono del suelo a 0­10 cm de profundidad, por lo que las reservas de carbono aumentaron con la influencia relativa de especies de árboles que demanda de luz. Los árboles que requieren luz tenían más nitrógeno en las hojas pero menor densidad de hojas que los árboles tolerantes a la sombra, lo que sugiere que la descomposición rápida del material vegetal rico en nutrientes en los bosques con una mayor proporción de especies que requieren luz da como resultado una mayor acumulación de carbono en la capa superficial de los suelos. Síntesis. Proponemos que el almacenamiento de carbono en el suelo en los bosques tropicales secundarios está más fuertemente relacionado con la composición funcional de los árboles que con la edad del bosque, y que la persistencia de árboles pioneros de larga vida podría mejorar el almacenamiento de carbono en el suelo a medida que los bosques envejecen. La consideración de los cambios en los grupos funcionales de los árboles podría mejorar las estimaciones del potencial de secuestro de carbono para la mitigación del cambio climático mediante la regeneración de los bosques tropicales.

10.
Sci Adv ; 8(26): eabn1767, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35776785

RESUMEN

Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (≤20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability. Hence, there is large continental-scale variation in the species composition of early successional forests, which is mainly associated with biogeographic and environmental factors but not with human disturbance indicators. This floristic distinctiveness is partially driven by regionally restricted species belonging to widespread genera. Early secondary forests contribute therefore to restoring and conserving the distinctiveness of bioregions across the Neotropical realm, and forest restoration initiatives should use local species to assure that these distinct floras are maintained.

11.
Trends Ecol Evol ; 36(8): 700-708, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33966918

RESUMEN

Tropical secondary forests are increasingly important for carbon sequestration and biodiversity conservation worldwide; yet, we still cannot accurately predict community turnover during secondary succession. We propose that integrating niche differentiation and dispersal limitation will generate an improved theoretical explanation of tropical forest succession. The interaction between seed sources and dispersers regulates seed movement throughout succession, and recent technological advances in animal tracking and molecular analyses enable us to accurately monitor seed movement as never before. We propose a framework to bridge the gap between niche differentiation and dispersal limitation. The Source-Disperser Limitation Framework (SDLF) provides a way to better predict secondary tropical forest succession across gradients of landscape disturbance by integrating seed sources and frugivore behavior.


Asunto(s)
Dispersión de Semillas , Árboles , Animales , Biodiversidad , Ecosistema , Bosques , Semillas , Clima Tropical
12.
Science ; 374(6573): 1370-1376, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34882461

RESUMEN

Tropical forests disappear rapidly because of deforestation, yet they have the potential to regrow naturally on abandoned lands. We analyze how 12 forest attributes recover during secondary succession and how their recovery is interrelated using 77 sites across the tropics. Tropical forests are highly resilient to low-intensity land use; after 20 years, forest attributes attain 78% (33 to 100%) of their old-growth values. Recovery to 90% of old-growth values is fastest for soil (<1 decade) and plant functioning (<2.5 decades), intermediate for structure and species diversity (2.5 to 6 decades), and slowest for biomass and species composition (>12 decades). Network analysis shows three independent clusters of attribute recovery, related to structure, species diversity, and species composition. Secondary forests should be embraced as a low-cost, natural solution for ecosystem restoration, climate change mitigation, and biodiversity conservation.

13.
Science ; 368(6487): 165-168, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32273463

RESUMEN

Understanding tropical forest dynamics and planning for their sustainable management require efficient, yet accurate, predictions of the joint dynamics of hundreds of tree species. With increasing information on tropical tree life histories, our predictive understanding is no longer limited by species data but by the ability of existing models to make use of it. Using a demographic forest model, we show that the basal area and compositional changes during forest succession in a neotropical forest can be accurately predicted by representing tropical tree diversity (hundreds of species) with only five functional groups spanning two essential trade-offs-the growth-survival and stature-recruitment trade-offs. This data-driven modeling framework substantially improves our ability to predict consequences of anthropogenic impacts on tropical forests.


Asunto(s)
Bosque Lluvioso , Biomasa
14.
Sci Total Environ ; 697: 133987, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31484096

RESUMEN

Reducing atmospheric CO2 is an international priority. One way to assist stabilising and reducing CO2 is to promote secondary tropical forest regrowth on abandoned agricultural land. However, relationships between above- and belowground carbon stocks with secondary forest age and specific soil nutrients remain unclear. Current global estimates for CO2 uptake and sequestration in secondary tropical forests focus on aboveground biomass and are parameterised using relatively coarse metrics of soil fertility. Here, we estimate total carbon stocks across a chronosequence of regenerating secondary forest stands (40-120 years old) in Panama, and assess the relationships between both above- and belowground carbon stocks with stand age and specific soil nutrients. We estimated carbon stocks in aboveground biomass, necromass, root biomass, and soil. We found that the two largest carbon pools - aboveground biomass and soil - have distinct relationships with stand age and soil fertility. Aboveground biomass contained ~61-97 Mg C ha-1 (24-39% total carbon stocks) and significantly increased with stand age, but showed no relationship with soil nutrients. Soil carbon stocks contained ~128-206 Mg C ha-1 (52-70% total stocks) and were unrelated to stand age, but were positively related to soil nitrogen. Root biomass carbon stocks tracked patterns exhibited by aboveground biomass. Necromass carbon stocks did not increase with stand age, but stocks were held in larger pieces of deadwood in older stands. Comparing our estimates to published data from younger and older secondary forests in the surrounding landscape, we show that soil carbon recovers within 40 years of forest regeneration, but aboveground biomass carbon stocks continue to increase past 100 years. Above- and belowground carbon stocks appear to be decoupled in secondary tropical forests. Paired measures of above- and belowground carbon stocks are necessary to reduce uncertainty in large-scale models of atmospheric CO2 uptake and storage by secondary forests.


Asunto(s)
Secuestro de Carbono , Carbono , Bosques , Nitrógeno/análisis , Fósforo/análisis , Suelo/química
15.
Sci Adv ; 5(3): eaau3114, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30854424

RESUMEN

Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes.


Asunto(s)
Biodiversidad , Ecosistema , Bosques , Clima Tropical , Conservación de los Recursos Naturales , Geografía
16.
Nat Ecol Evol ; 3(6): 928-934, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31011177

RESUMEN

Tropical forests are converted at an alarming rate for agricultural use and pastureland, but also regrow naturally through secondary succession. For successful forest restoration, it is essential to understand the mechanisms of secondary succession. These mechanisms may vary across forest types, but analyses across broad spatial scales are lacking. Here, we analyse forest recovery using 1,403 plots that differ in age since agricultural abandonment from 50 sites across the Neotropics. We analyse changes in community composition using species-specific stem wood density (WD), which is a key trait for plant growth, survival and forest carbon storage. In wet forest, succession proceeds from low towards high community WD (acquisitive towards conservative trait values), in line with standard successional theory. However, in dry forest, succession proceeds from high towards low community WD (conservative towards acquisitive trait values), probably because high WD reflects drought tolerance in harsh early successional environments. Dry season intensity drives WD recovery by influencing the start and trajectory of succession, resulting in convergence of the community WD over time as vegetation cover builds up. These ecological insights can be used to improve species selection for reforestation. Reforestation species selected to establish a first protective canopy layer should, among other criteria, ideally have a similar WD to the early successional communities that dominate under the prevailing macroclimatic conditions.


Asunto(s)
Clima Tropical , Madera , Ecología , Bosques , Árboles
17.
Ecol Evol ; 8(11): 5586-5597, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29938076

RESUMEN

Secondary forest habitats are increasingly recognized for their potential to conserve biodiversity in the tropics. However, the development of faunal assemblages in secondary forest systems varies according to habitat quality and species-specific traits. In this study, we predicted that the recovery of bird assemblages is dependent on secondary forest age and level of isolation, the forest stratum examined, and the species' traits of feeding guild and body mass. This study was undertaken in secondary forests in central Panama; spanning a chronosequence of 60-, 90-, and 120-year-old forests, and in neighboring old-growth forest. To give equal attention to all forest strata, we employed a novel method that paired simultaneous surveys in canopy and understory. This survey method provides a more nuanced picture than ground-based studies, which are biased toward understory assemblages. Bird reassembly varied according to both habitat age and isolation, although it was challenging to separate these effects, as the older sites were also more isolated than the younger sites. In combination, habitat age and isolation impacted understory birds more than canopy-dwelling birds. Proportions of dietary guilds did not vary with habitat age, but were significantly different between strata. Body mass distributions were similar across forest ages for small-bodied birds, but older forest supported more large-bodied birds, probably due to control of poaching at these sites. Canopy assemblages were characterized by higher species richness, and greater variation in both dietary breadth and body mass, relative to understory assemblages. The results highlight that secondary forests may offer critical refugia for many bird species, particularly specialist canopy-dwellers. However, understory bird species may be less able to adapt to novel and isolated habitats and should be the focus of conservation efforts encouraging bird colonization of secondary forests.

18.
Nat Ecol Evol ; 2(7): 1104-1111, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29807995

RESUMEN

The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.


Asunto(s)
Fabaceae/crecimiento & desarrollo , Bosques , Lluvia , Árboles/crecimiento & desarrollo , América Central , Densidad de Población , Puerto Rico , América del Sur
19.
PLoS One ; 12(10): e0185527, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29040272

RESUMEN

Tropical forest fragmentation creates insular biological communities that undergo species loss and changes in community composition over time, due to area- and edge-effects. Woody lianas thrive in degraded and secondary forests, due to their competitive advantage over trees in these habitats. Lianas compete both directly and indirectly with trees, increasing tree mortality and turnover. Despite our growing understanding of liana-tree dynamics, we lack detailed knowledge of the assemblage-level responses of lianas themselves to fragmentation, particularly in evergreen tropical forests. We examine the responses of both sapling and mature liana communities to landscape-scale forest insularization induced by a mega hydroelectric dam in the Brazilian Amazon. Detailed field inventories were conducted on islands created during reservoir filling, and in nearby mainland continuous forest. We assess the relative importance of variables associated with habitat fragmentation such as area, isolation, surrounding forest cover, fire and wind disturbance, on liana community attributes including abundance, basal area, diversity, and composition. We also explore patterns of liana dominance relative to tree saplings and adults ≥10 cm diameter at breast height. We find that 1) liana community composition remains remarkably similar across mainland continuous forest and islands, regardless of extreme area- and edge- effects and the loss of vertebrate dispersers in the latter; and 2) lianas are increasing in dominance relative to trees in the sapling layer in the most degraded islands, with both the amount of forest cover surrounding islands and fire disturbance history predicting liana dominance. Our data suggest that liana communities persist intact in isolated forests, regardless of extreme area- and edge-effects; while in contrast, tree communities simultaneously show evidence of increased turnover and supressed recruitment. These processes may lead to lianas becoming a dominant component of this dam-induced fragmented landscape in the future, due to their competitive advantage over trees in degraded forest habitats. Additional loss of tree biomass and diversity brought about through competition with lianas, and the concurrent loss of carbon storage, should be accounted for in impact assessments of future dam development.


Asunto(s)
Conservación de los Recursos Naturales , Malezas/fisiología , Centrales Eléctricas/ética , Árboles/fisiología , Biomasa , Brasil , Ecosistema , Bosques , Humanos , Ríos , Especificidad de la Especie , Clima Tropical
20.
Sci Adv ; 2(5): e1501639, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27386528

RESUMEN

Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km(2) of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.


Asunto(s)
Ciclo del Carbono , Secuestro de Carbono , Ecosistema , Bosques , Biodiversidad , Biomasa , Conservación de los Recursos Naturales , Granjas , Geografía , América Latina , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA