Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 163(7): 1692-701, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26687357

RESUMEN

Vesicular nucleo-cytoplasmic transport is becoming recognized as a general cellular mechanism for translocation of large cargoes across the nuclear envelope. Cargo is recruited, enveloped at the inner nuclear membrane (INM), and delivered by membrane fusion at the outer nuclear membrane. To understand the structural underpinning for this trafficking, we investigated nuclear egress of progeny herpesvirus capsids where capsid envelopment is mediated by two viral proteins, forming the nuclear egress complex (NEC). Using a multi-modal imaging approach, we visualized the NEC in situ forming coated vesicles of defined size. Cellular electron cryo-tomography revealed a protein layer showing two distinct hexagonal lattices at its membrane-proximal and membrane-distant faces, respectively. NEC coat architecture was determined by combining this information with integrative modeling using small-angle X-ray scattering data. The molecular arrangement of the NEC establishes the basic mechanism for budding and scission of tailored vesicles at the INM.


Asunto(s)
Transporte Activo de Núcleo Celular , Cápside/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestructura , Vesículas Transportadoras/ultraestructura , Animales , Cápside/ultraestructura , Chlorocebus aethiops , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Herpesvirus Humano 1/metabolismo , Herpesvirus Suido 1/metabolismo , Membrana Nuclear/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Dímeros de Pirimidina , Dispersión del Ángulo Pequeño , Vesículas Transportadoras/metabolismo , Células Vero , Proteínas Virales/química , Proteínas Virales/metabolismo
2.
Nucleic Acids Res ; 51(8): 4043-4054, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36951107

RESUMEN

The chemical modification of ribosomal RNA and proteins is critical for ribosome assembly, for protein synthesis and may drive ribosome specialisation in development and disease. However, the inability to accurately visualise these modifications has limited mechanistic understanding of the role of these modifications in ribosome function. Here we report the 2.15 Å resolution cryo-EM reconstruction of the human 40S ribosomal subunit. We directly visualise post-transcriptional modifications within the 18S rRNA and four post-translational modifications of ribosomal proteins. Additionally, we interpret the solvation shells in the core regions of the 40S ribosomal subunit and reveal how potassium and magnesium ions establish both universally conserved and eukaryote-specific coordination to promote the stabilisation and folding of key ribosomal elements. This work provides unprecedented structural details for the human 40S ribosomal subunit that will serve as an important reference for unravelling the functional role of ribosomal RNA modifications.


Asunto(s)
Proteínas Ribosómicas , Subunidades Ribosómicas Pequeñas de Eucariotas , Humanos , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Microscopía por Crioelectrón , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , ARN Ribosómico/metabolismo , ARN Ribosómico 18S/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33526596

RESUMEN

The RNA polymerase inhibitor favipiravir is currently in clinical trials as a treatment for infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), despite limited information about the molecular basis for its activity. Here we report the structure of favipiravir ribonucleoside triphosphate (favipiravir-RTP) in complex with the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) bound to a template:primer RNA duplex, determined by electron cryomicroscopy (cryoEM) to a resolution of 2.5 Å. The structure shows clear evidence for the inhibitor at the catalytic site of the enzyme, and resolves the conformation of key side chains and ions surrounding the binding pocket. Polymerase activity assays indicate that the inhibitor is weakly incorporated into the RNA primer strand, and suppresses RNA replication in the presence of natural nucleotides. The structure reveals an unusual, nonproductive binding mode of favipiravir-RTP at the catalytic site of SARS-CoV-2 RdRp, which explains its low rate of incorporation into the RNA primer strand. Together, these findings inform current and future efforts to develop polymerase inhibitors for SARS coronaviruses.


Asunto(s)
Amidas/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Inhibidores Enzimáticos/farmacología , Pirazinas/farmacología , SARS-CoV-2/ultraestructura , Amidas/química , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , ARN Polimerasa Dependiente de ARN de Coronavirus/química , Microscopía por Crioelectrón/métodos , Inhibidores Enzimáticos/química , Pirazinas/química , Ribonucleótidos/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Imagen Individual de Molécula/métodos
4.
Proc Natl Acad Sci U S A ; 114(32): 8544-8549, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28739903

RESUMEN

Glycoproteins traversing the eukaryotic secretory pathway begin life in the endoplasmic reticulum (ER), where their folding is surveyed by the 170-kDa UDP-glucose:glycoprotein glucosyltransferase (UGGT). The enzyme acts as the single glycoprotein folding quality control checkpoint: it selectively reglucosylates misfolded glycoproteins, promotes their association with ER lectins and associated chaperones, and prevents premature secretion from the ER. UGGT has long resisted structural determination and sequence-based domain boundary prediction. Questions remain on how this single enzyme can flag misfolded glycoproteins of different sizes and shapes for ER retention and how it can span variable distances between the site of misfold and a glucose-accepting N-linked glycan on the same glycoprotein. Here, crystal structures of a full-length eukaryotic UGGT reveal four thioredoxin-like (TRXL) domains arranged in a long arc that terminates in two ß-sandwiches tightly clasping the glucosyltransferase domain. The fold of the molecule is topologically complex, with the first ß-sandwich and the fourth TRXL domain being encoded by nonconsecutive stretches of sequence. In addition to the crystal structures, a 15-Å cryo-EM reconstruction reveals interdomain flexibility of the TRXL domains. Double cysteine point mutants that engineer extra interdomain disulfide bridges rigidify the UGGT structure and exhibit impaired activity. The intrinsic flexibility of the TRXL domains of UGGT may therefore endow the enzyme with the promiscuity needed to recognize and reglucosylate its many different substrates and/or enable reglucosylation of N-linked glycans situated at variable distances from the site of misfold.


Asunto(s)
Glucosiltransferasas/química , Glucosiltransferasas/fisiología , Animales , Chaetomium/genética , Chaetomium/metabolismo , Cristalografía por Rayos X/métodos , Retículo Endoplásmico/metabolismo , Eucariontes/metabolismo , Células Eucariotas/metabolismo , Glucosiltransferasas/metabolismo , Glicoproteínas/metabolismo , Conformación Molecular , Dominios Proteicos/fisiología , Pliegue de Proteína , Transporte de Proteínas/fisiología , Especificidad por Sustrato
5.
Nucleic Acids Res ; 41(11): 5912-26, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23595147

RESUMEN

All orthobunyaviruses possess three genome segments of single-stranded negative sense RNA that are encapsidated with the virus-encoded nucleocapsid (N) protein to form a ribonucleoprotein (RNP) complex, which is uncharacterized at high resolution. We report the crystal structure of both the Bunyamwera virus (BUNV) N-RNA complex and the unbound Schmallenberg virus (SBV) N protein, at resolutions of 3.20 and 2.75 Å, respectively. Both N proteins crystallized as ring-like tetramers and exhibit a high degree of structural similarity despite classification into different orthobunyavirus serogroups. The structures represent a new RNA-binding protein fold. BUNV N possesses a positively charged groove into which RNA is deeply sequestered, with the bases facing away from the solvent. This location is highly inaccessible, implying that RNA polymerization and other critical base pairing events in the virus life cycle require RNP disassembly. Mutational analysis of N protein supports a correlation between structure and function. Comparison between these crystal structures and electron microscopy images of both soluble tetramers and authentic RNPs suggests the N protein does not bind RNA as a repeating monomer; thus, it represents a newly described architecture for bunyavirus RNP assembly, with implications for many other segmented negative-strand RNA viruses.


Asunto(s)
Proteínas de la Nucleocápside/química , Orthobunyavirus , ARN/química , Ribonucleoproteínas/química , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de la Nucleocápside/metabolismo , Orthobunyavirus/fisiología , Unión Proteica , Multimerización de Proteína , ARN/metabolismo , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestructura , Transcripción Genética , Replicación Viral
6.
bioRxiv ; 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36909531

RESUMEN

The ability of ribosomes to translate the genetic code into protein requires a finely tuned ion and solvent ecosystem. However, the lack of high-resolution structures has precluded accurate positioning of all the functional elements of the ribosome and limited our understanding of the specific role of ribosomal RNA chemical modifications in modulating ribosome function in health and disease. Here, using a new sample preparation methodology based on functionalised pristine graphene-coated grids, we solve the cryo-EM structure of the human large ribosomal subunit to a resolution of 1.67 Å. The accurate assignment of water molecules, magnesium and potassium ions in our model highlights the fundamental biological role of ribosomal RNA methylation in harnessing unconventional carbon-oxygen hydrogen bonds to establish chemical interactions with the environment and fine-tune the functional interplay with tRNA. In addition, the structures of three translational inhibitors bound to the human large ribosomal subunit at better than 2 Å resolution provide mechanistic insights into how three key druggable pockets of the ribosome are targeted and illustrate the potential of this methodology to accelerate high-throughput structure-based design of anti-cancer therapeutics.

7.
Nat Commun ; 13(1): 929, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177605

RESUMEN

Many cellular processes, including ribosome biogenesis, are regulated through post-transcriptional RNA modifications. Here, a genome-wide analysis of the human mitochondrial transcriptome shows that 2'-O-methylation is limited to residues of the mitoribosomal large subunit (mtLSU) 16S mt-rRNA, introduced by MRM1, MRM2 and MRM3, with the modifications installed by the latter two proteins being interdependent. MRM2 controls mitochondrial respiration by regulating mitoribosome biogenesis. In its absence, mtLSU particles (visualized by cryo-EM at the resolution of 2.6 Å) present disordered RNA domains, partial occupancy of bL36m and bound MALSU1:L0R8F8:mtACP anti-association module, allowing five mtLSU biogenesis intermediates with different intersubunit interface configurations to be placed along the assembly pathway. However, mitoribosome biogenesis does not depend on the methyltransferase activity of MRM2. Disruption of the MRM2 Drosophila melanogaster orthologue leads to mitochondria-related developmental arrest. This work identifies a key checkpoint during mtLSU assembly, essential to maintain mitochondrial homeostasis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Metiltransferasas/metabolismo , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Subunidades Ribosómicas Grandes/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Masculino , Metilación , Metiltransferasas/genética , ARN Ribosómico 16S/metabolismo , Proteínas Ribosómicas/metabolismo
8.
Appl Microbiol Biotechnol ; 88(1): 143-53, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20607233

RESUMEN

Geobacillus pallidus RAPc8 (NRRL: B-59396) is a moderately thermophilic gram-positive bacterium, originally isolated from Australian lake sediment. The G. pallidus RAPc8 gene encoding an inducible nitrilase was located and cloned using degenerate primers coding for well-conserved nitrilase sequences, coupled with inverse PCR. The nitrilase open reading frame was cloned into an expression plasmid and the expressed recombinant enzyme purified and characterized. The protein had a monomer molecular weight of 35,790 Da, and the purified functional enzyme had an apparent molecular weight of approximately 600 kDa by size exclusion chromatography. Similar to several plant nitrilases and some bacterial nitrilases, the recombinant G. pallidus RAPc8 enzyme produced both acid and amide products from nitrile substrates. The ratios of acid to amide produced from the substrates we tested are significantly different to those reported for other enzymes, and this has implications for our understanding of the mechanism of the nitrilases which may assist with rational design of these enzymes. Electron microscopy and image classification showed complexes having crescent-like, "c-shaped", circular and "figure-8" shapes. Protein models suggested that the various complexes were composed of 6, 8, 10 and 20 subunits, respectively.


Asunto(s)
Aminohidrolasas/genética , Aminohidrolasas/metabolismo , Geobacillus/enzimología , Nitrilos/metabolismo , Secuencia de Aminoácidos , Aminohidrolasas/química , Cromatografía en Gel , Clonación Molecular , Análisis por Conglomerados , Cartilla de ADN/genética , Electroforesis en Gel de Poliacrilamida , Expresión Génica , Vectores Genéticos , Calor , Datos de Secuencia Molecular , Peso Molecular , Filogenia , Plásmidos , Reacción en Cadena de la Polimerasa/métodos , Multimerización de Proteína , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia
9.
Nat Struct Mol Biol ; 27(9): 855-862, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32747784

RESUMEN

The mature retrovirus capsid consists of a variably curved lattice of capsid protein (CA) hexamers and pentamers. High-resolution structures of the curved assembly, or in complex with host factors, have not been available. By devising cryo-EM methodologies for exceedingly flexible and pleomorphic assemblies, we have determined cryo-EM structures of apo-CA hexamers and in complex with cyclophilin A (CypA) at near-atomic resolutions. The CA hexamers are intrinsically curved, flexible and asymmetric, revealing the capsomere and not the previously touted dimer or trimer interfaces as the key contributor to capsid curvature. CypA recognizes specific geometries of the curved lattice, simultaneously interacting with three CA protomers from adjacent hexamers via two noncanonical interfaces, thus stabilizing the capsid. By determining multiple structures from various helical symmetries, we further revealed the essential plasticity of the CA molecule, which allows formation of continuously curved conical capsids and the mechanism of capsid pattern sensing by CypA.


Asunto(s)
Proteínas de la Cápside/metabolismo , Ciclofilina A/metabolismo , Infecciones por VIH/metabolismo , VIH-1/fisiología , Cápside/química , Cápside/metabolismo , Cápside/ultraestructura , Proteínas de la Cápside/química , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , Células HEK293 , VIH-1/química , VIH-1/ultraestructura , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
10.
Virol J ; 6: 36, 2009 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-19321000

RESUMEN

BACKGROUND: We have characterised a new highly divergent geminivirus species, Eragrostis curvula streak virus (ECSV), found infecting a hardy perennial South African wild grass. ECSV represents a new genus-level geminivirus lineage, and has a mixture of features normally associated with other specific geminivirus genera. RESULTS: Whereas the ECSV genome is predicted to express a replication associated protein (Rep) from an unspliced complementary strand transcript that is most similar to those of begomoviruses, curtoviruses and topocuviruses, its Rep also contains what is apparently a canonical retinoblastoma related protein interaction motif such as that found in mastreviruses. Similarly, while ECSV has the same unusual TAAGATTCC virion strand replication origin nonanucleotide found in another recently described divergent geminivirus, Beet curly top Iran virus (BCTIV), the rest of the transcription and replication origin is structurally more similar to those found in begomoviruses and curtoviruses than it is to those found in BCTIV and mastreviruses. ECSV also has what might be a homologue of the begomovirus transcription activator protein gene found in begomoviruses, a mastrevirus-like coat protein gene and two intergenic regions. CONCLUSION: Although it superficially resembles a chimaera of geminiviruses from different genera, the ECSV genome is not obviously recombinant, implying that the features it shares with other geminiviruses are those that were probably present within the last common ancestor of these viruses. In addition to inferring how the ancestral geminivirus genome may have looked, we use the discovery of ECSV to refine various hypotheses regarding the recombinant origins of the major geminivirus lineages.


Asunto(s)
Geminiviridae/clasificación , Geminiviridae/fisiología , Variación Genética , Filogenia , Geminiviridae/genética , Orden Génico , Genes Virales/genética , Genoma Viral/genética , Datos de Secuencia Molecular , Recombinación Genética , Sudáfrica , Especificidad de la Especie
11.
Appl Microbiol Biotechnol ; 82(2): 271-8, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18946669

RESUMEN

The fungal cyanide hydratases form a functionally specialized subset of the nitrilases which catalyze the hydrolysis of cyanide to formamide with high specificity. These hold great promise for the bioremediation of cyanide wastes. The low resolution (3.0 nm) three-dimensional reconstruction of negatively stained recombinant cyanide hydratase fibers from the saprophytic fungus Neurospora crassa by iterative helical real space reconstruction reveals that enzyme fibers display left-handed D(1) S(5.4) symmetry with a helical rise of 1.36 nm. This arrangement differs from previously characterized microbial nitrilases which demonstrate a structure built along similar principles but with a reduced helical twist. The cyanide hydratase assembly is stabilized by two dyadic interactions between dimers across the one-start helical groove. Docking of a homology-derived atomic model into the experimentally determined negative stain envelope suggests the location of charged residues which may form salt bridges and stabilize the helix.


Asunto(s)
Proteínas Fúngicas/química , Hidroliasas/química , Neurospora crassa/enzimología , Secuencia de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Expresión Génica , Hidroliasas/genética , Hidroliasas/aislamiento & purificación , Hidroliasas/metabolismo , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Neurospora crassa/química , Alineación de Secuencia
12.
Elife ; 82019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31115337

RESUMEN

During their final maturation in the cytoplasm, pre-60S ribosomal particles are converted to translation-competent large ribosomal subunits. Here, we present the mechanism of peptidyltransferase centre (PTC) completion that explains how integration of the last ribosomal proteins is coupled to release of the nuclear export adaptor Nmd3. Single-particle cryo-EM reveals that eL40 recruitment stabilises helix 89 to form the uL16 binding site. The loading of uL16 unhooks helix 38 from Nmd3 to adopt its mature conformation. In turn, partial retraction of the L1 stalk is coupled to a conformational switch in Nmd3 that allows the uL16 P-site loop to fully accommodate into the PTC where it competes with Nmd3 for an overlapping binding site (base A2971). Our data reveal how the central functional site of the ribosome is sculpted and suggest how the formation of translation-competent 60S subunits is disrupted in leukaemia-associated ribosomopathies.


Asunto(s)
Peptidil Transferasas/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón , Peptidil Transferasas/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Saccharomyces cerevisiae/ultraestructura
13.
Emerg Top Life Sci ; 2(1): 81-92, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33525785

RESUMEN

Cryo-soft X-ray tomography is an imaging technique that addresses the need for mesoscale imaging of cellular ultrastructure of relatively thick samples without the need for staining or chemical modification. It allows the imaging of cellular ultrastructure to a resolution of 25-40 nm and can be used in correlation with other imaging modalities, such as electron tomography and fluorescence microscopy, to further enhance the information content derived from biological samples. An overview of the technique, discussion of sample suitability and information about sample preparation, data collection and data analysis is presented here. Recent developments and future outlook are also discussed.

14.
Nat Commun ; 6: 10113, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26657148

RESUMEN

Cowpea mosaic virus is a plant-infecting member of the Picornavirales and is of major interest in the development of biotechnology applications. Despite the availability of >100 crystal structures of Picornavirales capsids, relatively little is known about the mechanisms of capsid assembly and genome encapsidation. Here we have determined cryo-electron microscopy reconstructions for the wild-type virus and an empty virus-like particle, to 3.4 Å and 3.0 Å resolution, respectively, and built de novo atomic models of their capsids. These new structures reveal the C-terminal region of the small coat protein subunit, which is essential for virus assembly and which was missing from previously determined crystal structures, as well as residues that bind to the viral genome. These observations allow us to develop a new model for genome encapsidation and capsid assembly.


Asunto(s)
Comovirus/genética , Comovirus/fisiología , Genoma , ARN Viral/fisiología , Ensamble de Virus/fisiología , Microscopía por Crioelectrón , Modelos Moleculares , Conformación de Ácido Nucleico
15.
Cell Rep ; 13(12): 2645-52, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26711332

RESUMEN

Although nucleo-cytoplasmic transport is typically mediated through nuclear pore complexes, herpesvirus capsids exit the nucleus via a unique vesicular pathway. Together, the conserved herpesvirus proteins pUL31 and pUL34 form the heterodimeric nuclear egress complex (NEC), which, in turn, mediates the formation of tight-fitting membrane vesicles around capsids at the inner nuclear membrane. Here, we present the crystal structure of the pseudorabies virus NEC. The structure revealed that a zinc finger motif in pUL31 and an extensive interaction network between the two proteins stabilize the complex. Comprehensive mutational analyses, characterized both in situ and in vitro, indicated that the interaction network is not redundant but rather complementary. Fitting of the NEC crystal structure into the recently determined cryoEM-derived hexagonal lattice, formed in situ by pUL31 and pUL34, provided details on the molecular basis of NEC coat formation and inner nuclear membrane remodeling.


Asunto(s)
Transporte Activo de Núcleo Celular , Herpesviridae/química , Membrana Nuclear/química , Proteínas Nucleares/química , Proteínas Virales/química , Cristalografía por Rayos X , Herpesviridae/metabolismo , Modelos Moleculares , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Conformación Proteica , Pliegue de Proteína , Relación Estructura-Actividad , Proteínas Virales/metabolismo , Dedos de Zinc
16.
Methods Cell Biol ; 124: 179-216, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25287842

RESUMEN

Soft X-ray cryo-microscopy/tomography with its extraordinary capability to map vitreous cells with high absorption contrast in their full three-dimensional extent, and at a resolution exceeding super-resolution fluorescence microscopy, is a valuable tool for integrative structural cell biology. Focusing on cell biological applications, its ongoing methodological development gained momentum by combining it with fluorescence cryo-microscopy, thus correlating highly resolved structural and specific information in situ. In this chapter, we provide a basic description of the techniques, as well as an overview of equipment and methods available to carry out correlative soft X-ray cryo-tomography experiments on frozen-hydrated cells grown on a planar support. Our aim here is to suggest ways that biologically representative data can be recorded to the highest possible resolution, while also keeping in mind the limitations of the technique during data acquisition and analysis. We have written from our perspective as electron cryo-microscopists/structural cell biologists who have experience using correlative fluorescence/cryoXM/T at synchrotron beamlines presently available for external users in Europe (HZB TXM at U41-FSGM, BESSY II, Berlin/Germany; Carl Zeiss TXMs at MISTRAL, ALBA, Barcelona/Spain, and B24, DLS, Oxfordshire, UK).


Asunto(s)
Análisis de la Célula Individual/métodos , Animales , Adhesión Celular , Células Cultivadas , Criopreservación , Humanos , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente/métodos , Tomografía por Rayos X/métodos
17.
Structure ; 21(7): 1225-34, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23810697

RESUMEN

Simple, spherical RNA viruses have well-understood, symmetric protein capsids, but little structural information is available for their asymmetric components, such as minor proteins and their genomes, which are vital for infection. Here, we report an asymmetric structure of bacteriophage MS2, attached to its receptor, the F-pilus. Cryo-electron tomography and subtomographic averaging of such complexes result in a structure containing clear density for the packaged genome, implying that the conformation of the genome is the same in each virus particle. The data also suggest that the single-copy viral maturation protein breaks the symmetry of the capsid, occupying a position that would be filled by a coat protein dimer in an icosahedral shell. This capsomere can thus fulfill its known biological roles in receptor and genome binding and suggests an exit route for the genome during infection.


Asunto(s)
Cápside/ultraestructura , Fimbrias Bacterianas/ultraestructura , Levivirus/ultraestructura , Acoplamiento Viral , Cápside/química , Proteínas de la Cápside/química , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Escherichia coli/virología , Genoma Viral , Levivirus/genética , Levivirus/fisiología , Modelos Moleculares , Internalización del Virus
18.
Mol Plant Pathol ; 11(1): 1-12, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20078771

RESUMEN

UNLABELLED: Maize streak virus (MSV; Genus Mastrevirus, Family Geminiviridae) occurs throughout Africa, where it causes what is probably the most serious viral crop disease on the continent. It is obligately transmitted by as many as six leafhopper species in the Genus Cicadulina, but mainly by C. mbila Naudé and C. storeyi. In addition to maize, it can infect over 80 other species in the Family Poaceae. Whereas 11 strains of MSV are currently known, only the MSV-A strain is known to cause economically significant streak disease in maize. Severe maize streak disease (MSD) manifests as pronounced, continuous parallel chlorotic streaks on leaves, with severe stunting of the affected plant and, usuallly, a failure to produce complete cobs or seed. Natural resistance to MSV in maize, and/or maize infections caused by non-maize-adapted MSV strains, can result in narrow, interrupted streaks and no obvious yield losses. MSV epidemiology is primarily governed by environmental influences on its vector species, resulting in erratic epidemics every 3-10 years. Even in epidemic years, disease incidences can vary from a few infected plants per field, with little associated yield loss, to 100% infection rates and complete yield loss. TAXONOMY: The only virus species known to cause MSD is MSV, the type member of the Genus Mastrevirus in the Family Geminiviridae. In addition to the MSV-A strain, which causes the most severe form of streak disease in maize, 10 other MSV strains (MSV-B to MSV-K) are known to infect barley, wheat, oats, rye, sugarcane, millet and many wild, mostly annual, grass species. Seven other mastrevirus species, many with host and geographical ranges partially overlapping those of MSV, appear to infect primarily perennial grasses. PHYSICAL PROPERTIES: MSV and all related grass mastreviruses have single-component, circular, single-stranded DNA genomes of approximately 2700 bases, encapsidated in 22 x 38-nm geminate particles comprising two incomplete T = 1 icosahedra, with 22 pentameric capsomers composed of a single 32-kDa capsid protein. Particles are generally stable in buffers of pH 4-8. DISEASE SYMPTOMS: In infected maize plants, streak disease initially manifests as minute, pale, circular spots on the lowest exposed portion of the youngest leaves. The only leaves that develop symptoms are those formed after infection, with older leaves remaining healthy. As the disease progresses, newer leaves emerge containing streaks up to several millimetres in length along the leaf veins, with primary veins being less affected than secondary or tertiary veins. The streaks are often fused laterally, appearing as narrow, broken, chlorotic stripes, which may extend over the entire length of severely affected leaves. Lesion colour generally varies from white to yellow, with some virus strains causing red pigmentation on maize leaves and abnormal shoot and flower bunching in grasses. Reduced photosynthesis and increased respiration usually lead to a reduction in leaf length and plant height; thus, maize plants infected at an early stage become severely stunted, producing undersized, misshapen cobs or giving no yield at all. Yield loss in susceptible maize is directly related to the time of infection: infected seedlings produce no yield or are killed, whereas plants infected at later times are proportionately less affected. DISEASE CONTROL: Disease avoidance can be practised by only planting maize during the early season when viral inoculum loads are lowest. Leafhopper vectors can also be controlled with insecticides such as carbofuran. However, the development and use of streak-resistant cultivars is probably the most effective and economically viable means of preventing streak epidemics. Naturally occurring tolerance to MSV (meaning that, although plants become systemically infected, they do not suffer serious yield losses) has been found, which has primarily been attributed to a single gene, msv-1. However, other MSV resistance genes also exist and improved resistance has been achieved by concentrating these within individual maize genotypes. Whereas true MSV immunity (meaning that plants cannot be symptomatically infected by the virus) has been achieved in lines that include multiple small-effect resistance genes together with msv-1, it has proven difficult to transfer this immunity into commercial maize genotypes. An alternative resistance strategy using genetic engineering is currently being investigated in South Africa. USEFUL WEBSITES: http://www.mcb.uct.ac.za/MSV/mastrevirus.htm; http://www.danforthcenter.org/iltab/geminiviridae/geminiaccess/mastrevirus/Mastrevirus.htm.


Asunto(s)
Virus de la Veta de Maíz/patogenicidad , Evolución Biológica , Genes Virales , Variación Genética , Virus de la Veta de Maíz/genética , Zea mays/virología
19.
FEBS Lett ; 584(13): 2786-90, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20471980

RESUMEN

Human respiratory syncytial virus (HRSV) is the leading cause of lower respiratory tract disease in infants. The HRSV small hydrophobic (SH) protein plays an important role in HRSV pathogenesis, although its mode of action is unclear. Analysis of the ability of SH protein to induce membrane permeability and form homo-oligomers suggests it acts as a viroporin. For the first time, we directly observed functional SH protein using electron microscopy, which revealed SH forms multimeric ring-like objects with a prominent central stained region. Based on current and existing functional data, we propose this region represents the channel that mediates membrane permeability.


Asunto(s)
Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/ultraestructura , Virus Sincitial Respiratorio Humano/metabolismo , Proteínas Oncogénicas de Retroviridae/metabolismo , Proteínas Oncogénicas de Retroviridae/ultraestructura , Western Blotting , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Liposomas/química , Microscopía Electrónica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Oncogénicas de Retroviridae/química , Proteínas Oncogénicas de Retroviridae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA