Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 18(5): e1010498, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35587469

RESUMEN

Drug repurposing has the advantage of shortening regulatory preclinical development steps. Here, we screened a library of drug compounds, already registered in one or several geographical areas, to identify those exhibiting antiviral activity against SARS-CoV-2 with relevant potency. Of the 1,942 compounds tested, 21 exhibited a substantial antiviral activity in Vero-81 cells. Among them, clofoctol, an antibacterial drug used for the treatment of bacterial respiratory tract infections, was further investigated due to its favorable safety profile and pharmacokinetic properties. Notably, the peak concentration of clofoctol that can be achieved in human lungs is more than 20 times higher than its IC50 measured against SARS-CoV-2 in human pulmonary cells. This compound inhibits SARS-CoV-2 at a post-entry step. Lastly, therapeutic treatment of human ACE2 receptor transgenic mice decreased viral load, reduced inflammatory gene expression and lowered pulmonary pathology. Altogether, these data strongly support clofoctol as a therapeutic candidate for the treatment of COVID-19 patients.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Animales , Antivirales/farmacología , Clorobencenos , Chlorocebus aethiops , Cresoles , Humanos , Pulmón , Ratones , Células Vero
2.
Electrophoresis ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225719

RESUMEN

In this work, a capillary electrophoresis method was developed as a quality control tool to determine the enantiomeric purity of a series of five chiral compounds evaluated as potential severe acute respiratory syndrome coronavirus 2 3CL protease inhibitors. The first cyclodextrin tested, that is, highly sulfated-ß-cyclodextrin, at 6% (m/v) in a 25 mM phosphate buffer, using a capillary dynamically coated with polyethylene oxide, at an applied voltage of 15 kV and a temperature of 25°C, was found to successfully separate the five derivatives. The limits of detection and quantification were calculated together with the greenness score of the method in order to evaluate the method in terms of analytical and environmental performance. In addition, it is noteworthy that simultaneously high-performance liquid chromatography separation of the enantiomers of the same compounds with two different columns, the amylose tris(3,5-dimethylphenylcarbamate)-coated and the cellulose tris(3,5-dichlorophenylcarbamate)-immobilized on silica stationary phases, was studied. Neither the former stationary phase nor the latter was able to separate all derivatives in a mobile phase consisting of n-heptane/propan-2-ol 80/20 (v/v).

3.
Angew Chem Int Ed Engl ; 61(39): e202203560, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35904863

RESUMEN

Endoplasmic reticulum aminopeptidase 2 (ERAP2) is a key enzyme involved in the trimming of antigenic peptides presented by Major Histocompatibility Complex class I. It is a target of growing interest for the treatment of autoimmune diseases and in cancer immunotherapy. However, the discovery of potent and selective ERAP2 inhibitors is highly challenging. Herein, we have used kinetic target-guided synthesis (KTGS) to identify such inhibitors. Co-crystallization experiments revealed the binding mode of three different inhibitors with increasing potency and selectivity over related enzymes. Selected analogues engage ERAP2 in cells and inhibit antigen presentation in a cellular context. 4 d (BDM88951) displays favorable in vitro ADME properties and in vivo exposure. In summary, KTGS allowed the discovery of the first nanomolar and selective highly promising ERAP2 inhibitors that pave the way of the exploration of the biological roles of this enzyme and provide lead compounds for drug discovery efforts.


Asunto(s)
Aminopeptidasas , Presentación de Antígeno , Aminopeptidasas/metabolismo , Antígenos de Histocompatibilidad Clase I , Péptidos/metabolismo
4.
Bioinformatics ; 36(14): 4225-4226, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32399567

RESUMEN

SUMMARY: Several web-based tools predict the putative targets of a small molecule query compound by similarity to molecules with known bioactivity data using molecular fingerprints. In numerous situations, it would however be valuable to be able to run such computations on a local computer. We present FastTargetPred, a new program for the prediction of protein targets for small molecule queries. Structural similarity computations rely on a large collection of confirmed protein-ligand activities extracted from the curated ChEMBL 25 database. The program allows to annotate an input chemical library of ∼100k compounds within a few hours on a simple personal computer. AVAILABILITY AND IMPLEMENTATION: FastTargetPred is written in Python 3 (≥3.7) and C languages. Python code depends only on the Python Standard Library. The program can be run on Linux, MacOS and Windows operating systems. Pre-compiled versions are available at https://github.com/ludovicchaput/FastTargetPred. FastTargetPred is licensed under the GNU GPLv3. The program calls some scripts from the free chemistry toolkit MayaChemTools. CONTACT: bruno.villoutreix@inserm.fr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Bases de Datos de Compuestos Químicos , Programas Informáticos , Computadores , Bases de Datos Factuales , Ligandos
5.
Molecules ; 26(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34641626

RESUMEN

Chemical biology and drug discovery are two scientific activities that pursue different goals but complement each other. The former is an interventional science that aims at understanding living systems through the modulation of its molecular components with compounds designed for this purpose. The latter is the art of designing drug candidates, i.e., molecules that act on selected molecular components of human beings and display, as a candidate treatment, the best reachable risk benefit ratio. In chemical biology, the compound is the means to understand biology, whereas in drug discovery, the compound is the goal. The toolbox they share includes biological and chemical analytic technologies, cell and whole-body imaging, and exploring the chemical space through state-of-the-art design and synthesis tools. In this article, we examine several tools shared by drug discovery and chemical biology through selected examples taken from research projects conducted in our institute in the last decade. These examples illustrate the design of chemical probes and tools to identify and validate new targets, to quantify target engagement in vitro and in vivo, to discover hits and to optimize pharmacokinetic properties with the control of compound concentration both spatially and temporally in the various biophases of a biological system.


Asunto(s)
Descubrimiento de Drogas/métodos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Química Farmacéutica , Diseño de Fármacos , Francia , Humanos , Estructura Molecular , Terapia Molecular Dirigida/métodos , Bibliotecas de Moléculas Pequeñas/química
6.
Angew Chem Int Ed Engl ; 60(48): 25428-25435, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34570415

RESUMEN

The main protease (3CLp) of the SARS-CoV-2, the causative agent for the COVID-19 pandemic, is one of the main targets for drug development. To be active, 3CLp relies on a complex interplay between dimerization, active site flexibility, and allosteric regulation. The deciphering of these mechanisms is a crucial step to enable the search for inhibitors. In this context, using NMR spectroscopy, we studied the conformation of dimeric 3CLp from the SARS-CoV-2 and monitored ligand binding, based on NMR signal assignments. We performed a fragment-based screening that led to the identification of 38 fragment hits. Their binding sites showed three hotspots on 3CLp, two in the substrate binding pocket and one at the dimer interface. F01 is a non-covalent inhibitor of the 3CLp and has antiviral activity in SARS-CoV-2 infected cells. This study sheds light on the complex structure-function relationships of 3CLp and constitutes a strong basis to assist in developing potent 3CLp inhibitors.


Asunto(s)
Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antivirales/química , Sitios de Unión , Chlorocebus aethiops , Proteasas 3C de Coronavirus/química , Inhibidores de Cisteína Proteinasa/química , Evaluación Preclínica de Medicamentos , Pruebas de Sensibilidad Microbiana , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Multimerización de Proteína , SARS-CoV-2/química , Bibliotecas de Moléculas Pequeñas/química , Células Vero
7.
Lancet ; 391(10115): 59-69, 2018 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-29107324

RESUMEN

BACKGROUND: On-pump cardiac surgery provokes a predictable perioperative myocardial ischaemia-reperfusion injury which is associated with poor clinical outcomes. We determined the occurrence of time-of-the-day variation in perioperative myocardial injury in patients undergoing aortic valve replacement and its molecular mechanisms. METHODS: We studied the incidence of major adverse cardiac events in a prospective observational single-centre cohort study of patients with severe aortic stenosis and preserved left ventricular ejection fraction (>50%) who were referred to our cardiovascular surgery department at Lille University Hospital (Lille, France) for aortic valve replacement and underwent surgery in the morning or afternoon. Patients were matched into pairs by propensity score. We also did a randomised study, in which we evaluated perioperative myocardial injury and myocardial samples of patients randomly assigned (1:1) via permuted block randomisation (block size of eight) to undergo isolated aortic valve replacement surgery either in the morning or afternoon. We also evaluated human and rodent myocardium in ex-vivo hypoxia-reoxygenation models and did a transcriptomic analysis in myocardial samples from the randomised patients to identify the signalling pathway(s) involved. The primary objective of the study was to assess whether myocardial tolerance of ischaemia-reperfusion differed depending on the timing of aortic valve replacement surgery (morning vs afternoon), as measured by the occurrence of major adverse cardiovascular events (cardiovascular death, myocardial infarction, and admission to hospital for acute heart failure). The randomised study is registered with ClinicalTrials.gov, number NCT02812901. FINDINGS: In the cohort study (n=596 patients in matched pairs who underwent either morning surgery [n=298] or afternoon surgery [n=298]), during the 500 days following aortic valve replacement, the incidence of major adverse cardiac events was lower in the afternoon surgery group than in the morning group: hazard ratio 0·50 (95% CI 0·32-0·77; p=0·0021). In the randomised study, 88 patients were randomly assigned to undergo surgery in the morning (n=44) or afternoon (n=44); perioperative myocardial injury assessed with the geometric mean of perioperative cardiac troponin T release was significantly lower in the afternoon group than in the morning group (estimated ratio of geometric means for afternoon to morning of 0·79 [95% CI 0·68-0·93; p=0·0045]). Ex-vivo analysis of human myocardium revealed an intrinsic morning-afternoon variation in hypoxia-reoxygenation tolerance, concomitant with transcriptional alterations in circadian gene expression with the nuclear receptor Rev-Erbα being highest in the morning. In a mouse Langendorff model of hypoxia-reoxygenation myocardial injury, Rev-Erbα gene deletion or antagonist treatment reduced injury at the time of sleep-to-wake transition, through an increase in the expression of the ischaemia-reperfusion injury modulator CDKN1a/p21. INTERPRETATION: Perioperative myocardial injury is transcriptionally orchestrated by the circadian clock in patients undergoing aortic valve replacement, and Rev-Erbα antagonism seems to be a pharmacological strategy for cardioprotection. Afternoon surgery might provide perioperative myocardial protection and lead to improved patient outcomes compared with morning surgery. FUNDING: Fondation de France, Fédération Française de Cardiologie, EU-FP7-Eurhythdia, Agence Nationale pour la Recherche ANR-10-LABX-46, and CPER-Centre Transdisciplinaire de Recherche sur la Longévité.


Asunto(s)
Estenosis de la Válvula Aórtica/cirugía , Ritmo Circadiano , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Daño por Reperfusión Miocárdica/epidemiología , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Complicaciones Posoperatorias/epidemiología , Anciano , Anciano de 80 o más Años , Estenosis de la Válvula Aórtica/metabolismo , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Daño por Reperfusión Miocárdica/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Complicaciones Posoperatorias/metabolismo , Puntaje de Propensión , Transducción de Señal , Resultado del Tratamiento
8.
Acta Neuropathol ; 138(4): 631-652, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31065832

RESUMEN

The bridging integrator 1 gene (BIN1) is a major genetic risk factor for Alzheimer's disease (AD). In this report, we investigated how BIN1-dependent pathophysiological processes might be associated with Tau. We first generated a cohort of control and transgenic mice either overexpressing human MAPT (TgMAPT) or both human MAPT and BIN1 (TgMAPT;TgBIN1), which we followed-up from 3 to 15 months. In TgMAPT;TgBIN1 mice short-term memory deficits appeared earlier than in TgMAPT mice; however-unlike TgMAPT mice-TgMAPT;TgBIN1 mice did not exhibit any long-term or spatial memory deficits for at least 15 months. After killing the cohort at 18 months, immunohistochemistry revealed that BIN1 overexpression prevents both Tau mislocalization and somatic inclusion in the hippocampus, where an increase in BIN1-Tau interaction was also observed. We then sought mechanisms controlling the BIN1-Tau interaction. We developed a high-content screening approach to characterize modulators of the BIN1-Tau interaction in an agnostic way (1,126 compounds targeting multiple pathways), and we identified-among others-an inhibitor of calcineurin, a Ser/Thr phosphatase. We determined that calcineurin dephosphorylates BIN1 on a cyclin-dependent kinase phosphorylation site at T348, promoting the open conformation of the neuronal BIN1 isoform. Phosphorylation of this site increases the availability of the BIN1 SH3 domain for Tau interaction, as demonstrated by nuclear magnetic resonance experiments and in primary neurons. Finally, we observed that although the levels of the neuronal BIN1 isoform were unchanged in AD brains, phospho-BIN1(T348):BIN1 ratio was increased, suggesting a compensatory mechanism. In conclusion, our data support the idea that BIN1 modulates the AD risk through an intricate regulation of its interaction with Tau. Alteration in BIN1 expression or activity may disrupt this regulatory balance with Tau and have direct effects on learning and memory.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Trastornos de la Memoria/metabolismo , Memoria a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Tauopatías/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas tau/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Trastornos de la Memoria/genética , Trastornos de la Memoria/patología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neuronas/patología , Fosforilación , Memoria Espacial/fisiología , Tauopatías/genética , Tauopatías/patología , Proteínas Supresoras de Tumor/genética
9.
Bioorg Med Chem ; 26(4): 945-956, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28818461

RESUMEN

Targeting the TNFα pathway is a validated approach to the treatment of psoriasis. In this pathway, TACE stands out as a druggable target and has been the focus of in-house research programs. In this article, we present the discovery of clinical candidate 26a. Starting from hits plagued with poor solubility or genotoxicity, 26a was identified through thorough multiparameter optimisation. Showing robust in vivo activity in an oxazolone-mediated inflammation model, the compound was selected for development. Following a polymorph screen, the hydrochloride salt was selected and the synthesis was efficiently developed to yield the API in 47% overall yield.


Asunto(s)
Proteína ADAM17/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Proteína ADAM17/metabolismo , Administración Tópica , Animales , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Ácidos Hidroxámicos/química , Ratones , Ratones Pelados , Microsomas Hepáticos/metabolismo , Oxazolona/toxicidad , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Enfermedades de la Piel/inducido químicamente , Enfermedades de la Piel/prevención & control , Enfermedades de la Piel/veterinaria , Solubilidad , Sulfonamidas/síntesis química , Sulfonamidas/química , Sulfonamidas/uso terapéutico , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo
10.
Acta Neuropathol ; 133(6): 955-966, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27933404

RESUMEN

Genome-wide association studies (GWASs) have identified 19 susceptibility loci for Alzheimer's disease (AD). However, understanding how these genes are involved in the pathophysiology of AD is one of the main challenges of the "post-GWAS" era. At least 123 genes are located within the 19 susceptibility loci; hence, a conventional approach (studying the genes one by one) would not be time- and cost-effective. We therefore developed a genome-wide, high-content siRNA screening approach and used it to assess the functional impact of gene under-expression on APP metabolism. We found that 832 genes modulated APP metabolism. Eight of these genes were located within AD susceptibility loci. Only FERMT2 (a ß3-integrin co-activator) was also significantly associated with a variation in cerebrospinal fluid Aß peptide levels in 2886 AD cases. Lastly, we showed that the under-expression of FERMT2 increases Aß peptide production by raising levels of mature APP at the cell surface and facilitating its recycling. Taken as a whole, our data suggest that FERMT2 modulates the AD risk by regulating APP metabolism and Aß peptide production.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , ARN Interferente Pequeño/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Biomarcadores/líquido cefalorraquídeo , Membrana Celular/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Neuronas/metabolismo , Neuronas/patología , Interferencia de ARN , Ratas
11.
Bioorg Med Chem Lett ; 27(8): 1848-1853, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28274635

RESUMEN

Targeting the Tumor Necrosis Factor α signalling with antibodies has led to a revolution in the treatment of psoriasis. Locally inhibiting Tumor Necrosis Factor α Converting Enzyme (TACE or ADAM17) could potentially mimic those effects and help treat mild to moderate psoriasis, without the reported side effect of systemic TACE inhibitors. Efforts to identify new TACE inhibitors are presented here. Enzymatic SAR as well as ADME and physico-chemistry data are presented. This study culminated in the identification of potent enzymatic inhibitors. Suboptimal cellular activity of this series is discussed in the context of previously published results.


Asunto(s)
Proteína ADAM17/antagonistas & inhibidores , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Ácidos Hidroxámicos/administración & dosificación , Ácidos Hidroxámicos/química , Proteína ADAM17/metabolismo , Administración Tópica , Humanos , Psoriasis/tratamiento farmacológico , Psoriasis/enzimología
12.
Anal Biochem ; 491: 52-4, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26302360

RESUMEN

Rapid and efficient structural analysis is key to the development of new monoclonal antibodies. We have developed a fast and easy process to obtain mass spectrometry profiles of antibodies from culture supernatant. Treatment of the supernatant with IdeS generates three fragments of 25 kDa that can be analyzed by liquid chromatography-mass spectrometry time-of-flight (LC-MS TOF) in one run: LC, Fd, and Fc/2. This process gives rapid access to isoform and glycoform profiles. To specifically measure the fucosylation yield, we included a one-pot treatment with EndoS that removes the distal glycan heterogeneity. Our process was successfully compared with high-performance capillary electrophoresis with laser-induced fluorescence detection (HPCE-LIF), currently considered as the "gold standard" method.


Asunto(s)
Anticuerpos Monoclonales/análisis , Cromatografía Líquida de Alta Presión , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Electroforesis Capilar , Glicosilación , Isoformas de Proteínas/análisis , Espectrometría de Fluorescencia
13.
Anal Biochem ; 452: 54-66, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24561027

RESUMEN

EthR is a mycobacterial repressor that limits the bioactivation of ethionamide, a commonly used anti-tuberculosis second-line drug. Several efforts have been deployed to identify EthR inhibitors abolishing the DNA-binding activity of the repressor. This led to the demonstration that stimulating the bioactivation of Eth through EthR inhibition could be an alternative way to fight Mycobacterium tuberculosis. We propose a new surface plasmon resonance (SPR) methodology to study the affinity between inhibitors and EthR. Interestingly, the binding between inhibitors and immobilized EthR produced a dose-dependent negative SPR signal. We demonstrate that this signal reveals the affinity of small molecules for the repressor. The affinity constants (K(D)) correlate with their capacity to inhibit the binding of EthR to DNA. We hypothesize that conformational changes in EthR during ligand interaction could be responsible for this SPR signal. Practically, this unconventional result opens perspectives onto the development of an SPR assay that would at the same time reveal structural changes in the target upon binding with an inhibitor and the binding constant of this interaction.


Asunto(s)
Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Resonancia por Plasmón de Superficie/métodos , Biotinilación , Ligandos , Mycobacterium tuberculosis , Proteínas Represoras/química , Temperatura de Transición
14.
Nucleic Acids Res ; 40(7): 3018-30, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22156370

RESUMEN

Ethionamide is an antituberculous drug for the treatment of multidrug-resistant Mycobacterium tuberculosis. This antibiotic requires activation by the monooxygenase EthA to exert its activity. Production of EthA is controlled by the transcriptional repressor EthR, a member of the TetR family. The sensitivity of M. tuberculosis to ethionamide can be artificially enhanced using synthetic ligands of EthR that allosterically inactivate its DNA-binding activity. Comparison of several structures of EthR co-crystallized with various ligands suggested that the structural reorganization of EthR resulting in its inactivation is controlled by a limited portion of the ligand-binding-pocket. In silico simulation predicted that mutation G106W may mimic ligands. X-ray crystallography of variant G106W indeed revealed a protein structurally similar to ligand-bound EthR. Surface plasmon resonance experiments established that this variant is unable to bind DNA, while thermal shift studies demonstrated that mutation G106W stabilizes EthR as strongly as ligands. Proton NMR of the methyl regions showed a lesser contribution of exchange broadening upon ligand binding, and the same quenched dynamics was observed in apo-variant G106W. Altogether, we here show that the area surrounding Gly106 constitutes the molecular switch involved in the conformational reorganization of EthR. These results also shed light on the mechanistic of ligand-induced allosterism controlling the DNA binding properties of TetR family repressors.


Asunto(s)
Proteínas Represoras/química , Sustitución de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , ADN/metabolismo , Ligandos , Modelos Moleculares , Mutagénesis , Resonancia Magnética Nuclear Biomolecular , Pliegue de Proteína , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
15.
Br J Pharmacol ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812293

RESUMEN

BACKGROUND AND PURPOSE: Nonalcoholic fatty liver disease refers to liver pathologies, ranging from steatosis to steatohepatitis, with fibrosis ultimately leading to cirrhosis and hepatocellular carcinoma. Although several mechanisms have been suggested, including insulin resistance, oxidative stress, and inflammation, its pathophysiology remains imperfectly understood. Over the last decade, a dysfunctional unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress emerged as one of the multiple driving factors. In parallel, growing evidence suggests that insulin-degrading enzyme (IDE), a highly conserved and ubiquitously expressed metallo-endopeptidase originally discovered for its role in insulin decay, may regulate ER stress and UPR. EXPERIMENTAL APPROACH: We investigated, by genetic and pharmacological approaches, in vitro and in vivo, whether IDE modulates ER stress-induced UPR and lipid accumulation in the liver. KEY RESULTS: We found that IDE-deficient mice display higher hepatic triglyceride content along with higher inositol-requiring enzyme 1 (IRE1) pathway activation. Upon induction of ER stress by tunicamycin or palmitate in vitro or in vivo, pharmacological inhibition of IDE, using its inhibitor BDM44768, mainly exacerbated ER stress-induced IRE1 activation and promoted lipid accumulation in hepatocytes, effects that were abolished by the IRE1 inhibitors 4µ8c and KIRA6. Finally, we identified that IDE knockout promotes lipolysis in adipose tissue and increases hepatic CD36 expression, which may contribute to steatosis. CONCLUSION AND IMPLICATIONS: These results unravel a novel role for IDE in the regulation of ER stress and development of hepatic steatosis. These findings pave the way to innovative strategies modulating IDE to treat metabolic diseases.

16.
EMBO Mol Med ; 16(1): 93-111, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177534

RESUMEN

Antimicrobial resistance is a global problem, rendering conventional treatments less effective and requiring innovative strategies to combat this growing threat. The tripartite AcrAB-TolC efflux pump is the dominant constitutive system by which Enterobacterales like Escherichia coli and Klebsiella pneumoniae extrude antibiotics. Here, we describe the medicinal chemistry development and drug-like properties of BDM91288, a pyridylpiperazine-based AcrB efflux pump inhibitor. In vitro evaluation of BDM91288 confirmed it to potentiate the activity of a panel of antibiotics against K. pneumoniae as well as revert clinically relevant antibiotic resistance mediated by acrAB-tolC overexpression. Using cryo-EM, BDM91288 binding to the transmembrane region of K. pneumoniae AcrB was confirmed, further validating the mechanism of action of this inhibitor. Finally, proof of concept studies demonstrated that oral administration of BDM91288 significantly potentiated the in vivo efficacy of levofloxacin treatment in a murine model of K. pneumoniae lung infection.


Asunto(s)
Antibacterianos , Proteínas de Escherichia coli , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/farmacología , Klebsiella pneumoniae/metabolismo , Escherichia coli , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/farmacología
17.
Acta Crystallogr C ; 69(Pt 11): 1243-50, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24192167

RESUMEN

Tuberculosis remains the second only to HIV as the leading cause of death by infectious disease worldwide, and was responsible for 1.4 million deaths globally in 2011. One of the essential drugs of the second-line antitubercular regimen is the prodrug ethionamide, introduced in the 1960s. Ethionamide is primarily used in cases of multi-drug resistant (MDR) and extensively drug resistant (XDR) TB due to severe adverse side effects. As a prodrug, ethionamide is bioactivated by EthA, a mono-oxygenase whose activity is repressed by EthR, a member of the TetR family of regulators. Previous studies have established that inhibition of EthR improves ethionamide potency. We report here the crystal structures of three EthR inhibitors at 0.8 Šresolution (3-oxo-3-{4-[3-(thiophen-2-yl)-1,2,4-oxadiazol-5-yl]piperidin-1-yl}propanenitrile (BDM31343), 4,4,4-trifluoro-1-{4-[3-(6-methoxy-1,3-benzothiazol-2-yl)-1,2,4-oxadiazol-5-yl]piperidin-1-yl}butanone (BDM41325) and 5,5,5-trifluoro-1-{4-[3-(4-methanesulfonylphenyl)-1,2,4-oxadiazol-5-yl]piperidin-1-yl}pentanone (BDM41907)), and the docking studies undertaken to investigate possible binding modes. The results revealed two distinct orientations of the three compounds in the binding channel, a direct consequence of the promiscuous nature of the largely lipophilic binding site.


Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Etionamida/química , Etionamida/farmacología , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/efectos de los fármacos , Profármacos/química , Profármacos/farmacología , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares
18.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36986512

RESUMEN

The concept of privileged structure has been used as a fruitful approach for the discovery of novel biologically active molecules. A privileged structure is defined as a semi-rigid scaffold able to display substituents in multiple spatial directions and capable of providing potent and selective ligands for different biological targets through the modification of those substituents. On average, these backbones tend to exhibit improved drug-like properties and therefore represent attractive starting points for hit-to-lead optimization programs. This article promotes the rapid, reliable, and efficient synthesis of novel, highly 3-dimensional, and easily functionalized bio-inspired tricyclic spirolactams, as well as an analysis of their drug-like properties.

19.
Heliyon ; 9(9): e20002, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809712

RESUMEN

Phthalate acid esters (PAE) are used as additives in the formulation of plastics, to increase their flexibility and transparency. They can migrate from plastic packaging to food, then cause endocrine disruption in consumers. This migration depends on the conditions of use defined for each plastic. Non-food plastics are likely to release more PAE than food-grade plastics. In Cameroon, non-food grade plastics such as old paint buckets are used by people to preserve liquid food. The present work aimed at studying the conditions and mechanism of migration of total PAE from paint buckets to pap. For this purpose, the effects of seven factors were determined through Plackett-Burman experimental design. The interactions of the most influential factors were determined through a full factorial design. The conditions of the migration of total PAE were obtained via face-centered composite design. Then experimental results of migration kinetics were modelled according to equations of pseudo-first order, pseudo-second order and intra-particle diffusion. The results revealed that the most influential factors were pH, temperature and contact time. The effects of these factors are non-linear, and their interactions have to be considered. When pap is preserved in paint buckets according to the conditions: temperature of pap >70 °C, pH of pap ≤4 or ≥10 and contact time > 2 h, as is the case in donut shops in Cameroon, the amount of total PAE released is greater than 50 µg/L. Migration of total PAE from paint buckets to pap is best described by the pseudo-second order model.

20.
Eur J Med Chem ; 259: 115630, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37459793

RESUMEN

Multidrug-resistant Escherichia coli is a continuously growing worldwide public health problem, in which the well-known AcrAB-TolC tripartite RND efflux pump is a critical driver. We have previously described pyridylpiperazines as a novel class of allosteric inhibitors of E. coli AcrB which bind to a unique site in the protein transmembrane domain, allowing for the potentiation of antibiotic activity. Here, we show a rational optimization of pyridylpiperazines by modifying three specific derivatization points of the pyridine core to improve the potency and the pharmacokinetic properties of this chemical series. In particular, this work found that the introduction of a primary amine to the pyridine through ester (29, BDM91270) or oxadiazole (44, BDM91514) based linkers allowed for analogues with improved antibiotic boosting potency through AcrB inhibition. In vitro studies, using genetically engineered mutants, showed that this improvement in potency is mediated through novel interactions with distal acidic residues of the AcrB binding pocket. Of the two leads, compound 44 was found to have favorable physico-chemical properties and suitable plasma and microsomal stability. Together, this work expands the current structure-activity relationship data on pyridylpiperazine efflux pump inhibitors, and provides a promising step towards future in vivo proof of concept of pyridylpiperazines as antibiotic potentiators.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Antibacterianos/química , Piridinas/farmacología , Piridinas/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Portadoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA