Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 40(13): 6909-6917, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38507256

RESUMEN

Ligand exchange reaction (LER) between carbon nanoparticles and ferrocene (Cp2Fe) was conducted several times, but there was no convincing evidence of half-sandwich CpFe+ coordination to multiwalled carbon nanotubes (MWCNT). In this study, MWCNT is modified by LER with ferrocene using AlCl3/Al as a catalytic system. The modified MWCNT (Fc-MWCNT) are investigated for better understanding of the processes taking place on the surface of MWCNT using different spectroscopic and electrochemical methods. The formation of the Fe-C covalent bond between CpFe+ and MWCNT is confirmed by changes in the Raman spectrum of Fc-MWCNT compared to pristine MWCNT. The densest structure of Fc-MWCNT is investigated by transmission electronic microscopy. According to density-functional theory calculations of the model interaction between Fe and coronene, the Fe-C bond length is 2.1687-2.1855 Å. X-ray photoelectron spectroscopy also confirms the coordination of the Fe atom to MWCNT by analysis of oxidation states of Fe 2p and deconvolution of C 1s. Utilization of cyclic voltammetry corroborated MWCNT modification via LER. These data are important for both theoretical and practical applications due to increased interest in LER-modified compounds in different areas including thermoelectric devices, sensors, and its potential application in the field of molecular machine construction.

2.
Macromol Rapid Commun ; : e2400450, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072911

RESUMEN

Polymer-metal complexes (PMCs) based on poly(2,2'-bipyridine-4,4'-dicarboxamide-co-polydimethylsiloxanes) with cyclometalated di(2-phenylpyridinato-C2,N')iridium(III) fragments and cross-linked by Zn2+ (Zn[Ir]-BipyPDMSs) or Ir3+ (Ir[Ir]-BipyPDMSs) represent flexible, stretchable, phosphorescent, and self-healing molecular oxygen sensors. PMCs provide strong phosphorescence at λem = 595-605 nm. Zn[Ir]-BipyPDMS with PDMS chain length of Mn = 5000 has the highest quantum yield of 9.3% and is a molecular oxygen sensor at different O2 concentrations (0-100 vol%) compared to Ir[Ir]-BipyPDMSs. A Stern-Volmer constant is determined for Zn[Ir]-BipyPDMS as KSV = 0.014%-1, which is similar to the reported oxygen-sensitive iridium(III) complexes. All synthesized PMCs exhibit high elongation at break (up to 1100%) and self-healing efficiency (up to 99%).

3.
Molecules ; 26(22)2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34833958

RESUMEN

This study focuses on the synthesis of hybrid luminescent polysiloxanes and silicone rubbers grafted by organometallic rhenium(I) complexes using Cu(I)-catalyzed azido-alkyne cycloaddition (CuAAC). The design of the rhenium(I) complexes includes using a diimine ligand to create an MLCT luminescent center and the introduction of a triple C≡C bond on the periphery of the ligand environment to provide click-reaction capability. Poly(3-azidopropylmethylsiloxane-co-dimethylsiloxane) (N3-PDMS) was synthesized for incorporation of azide function in polysiloxane chain. [Re(CO)3(MeCN)(5-(4-ethynylphenyl)-2,2'-bipyridine)]OTf (Re1) luminescent complex was used to prepare a luminescent copolymer with N3-PDMS (Re1-PDMS), while [Re(CO)3Cl(5,5'-diethynyl-2,2'-bipyridine)] (Re2) was used as a luminescent cross-linking agent of N3-PDMS to obtain luminescent silicone rubber (Re2-PDMS). The examination of photophysical properties of the hybrid polymer materials obtained show that emission profile of Re(I) moiety remains unchanged and metallocenter allows to control the creation of polysiloxane-based materials with specified properties.

4.
Org Biomol Chem ; 17(22): 5545-5549, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31107495

RESUMEN

The platinum-catalyzed self-cross-linking of polymethylhydrosiloxane at RT in air was performed for the first time and proved by 1H, 13C, and 29Si SSNMR and swelling measurements. Quantum chemical modeling of possible structures was investigated. Platinum (0) and (ii) complexes were used as catalysts between the Si-H groups of polymethylhydrosiloxane. Karstedt's catalyst leads to Si-O-Si and Si-Si bond formation, but cis-[PtCl2(BnCN)2] generates predominantly Si-O-Si cross-links. cis-[PtCl2(BnCN)2] allows creating high-quality silicone rubbers without visible mechanical defects. This cross-linking approach can be used to obtain new Si-H-containing silicone materials.

5.
Biomimetics (Basel) ; 8(3)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37504174

RESUMEN

This review is dedicated to self-healing silicone materials, which can partially or entirely restore their original characteristics after mechanical or electrical damage is caused to them, such as formed (micro)cracks, scratches, and cuts. The concept of self-healing materials originated from biomaterials (living tissues) capable of self-healing and regeneration of their functions (plants, human skin and bones, etc.). Silicones are ones of the most promising polymer matrixes to create self-healing materials. Self-healing silicones allow an increase of the service life and durability of materials and devices based on them. In this review, we provide a critical analysis of the current existing types of self-healing silicone materials and their functional properties, which can be used in biomedicine, optoelectronics, nanotechnology, additive manufacturing, soft robotics, skin-inspired electronics, protection of surfaces, etc.

6.
Dalton Trans ; 52(18): 5854-5858, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37098691

RESUMEN

A platinum polymer catalyst (Pt-PDMS) was synthesized by immobilization of a platinum catalytic complex in a polysiloxane chain using an azide-alkyne CuAAC cycloaddition. Insoluble Pt-PDMS can be used as an effective heterogeneous macrocatalyst for Si-O dehydrocoupling. Pt-PDMS is easy to recover, purify, and reuse again for heterogeneous catalysis.

7.
Polymers (Basel) ; 14(24)2022 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36559907

RESUMEN

Photoluminescent lanthanide complexes of Eu3+ and Tb3+ as central atoms and N6,N6'-diisopropyl-[2,2'-bipyridine]-6,6'-dicarboxamide as ligand were synthesized. The structure of these complexes was established by single-crystal X-ray diffraction, mass spectrometry, 1H and 13C nuclear magnetic resonance, ultraviolet-visible, infrared spectroscopy, and thermogravimetry. Bipyridinic ligands provide formation of coordinatively saturated complexes of lanthanide ions and strong photoluminescence (PL). The Eu3+- and Tb3+-complexes exhibit PL emission in the red and green regions observed at a 340 nm excitation. The quantum yield for the complexes was revealed to be 36.5 and 12.6% for Tb3+- and Eu3+-complexes, respectively. These lanthanide compounds could be employed as photoluminescent solid-state compounds and as emitting fillers in polymer (for example, polyethylene glycol) photoluminescent materials.

8.
J Phys Chem Lett ; 12(39): 9672-9676, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34590867

RESUMEN

The architecture of transparent contacts is of utmost importance for creation of efficient flexible light-emitting devices (LEDs) and other deformable electronic devices. We successfully combined the newly synthesized transparent and durable silicone rubbers and the semiconductor materials with original fabrication methods to design LEDs and demonstrate their significant flexibility. We developed electrodes based on a composite GaP nanowire-phenylethyl-functionalized silicone rubber membrane, improved with single-walled carbon nanotube films for a hybrid poly(ethylene oxide)-metal-halide perovskite (CsPbBr3) flexible green LED. The proposed approach provides a novel platform for fabrication of flexible hybrid optoelectronic devices.

9.
Dalton Trans ; 49(26): 8855-8858, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32589173

RESUMEN

A new method was developed for the metal-free cross-linking of silicone rubbers. This process uses azobisisobutyronitrile (AIBN) to selectively react with Si-H and vinyl groups as a free-radical initiator for the thermal curing of polymethylhydrosiloxane (PMHS) and polymethylvinylsiloxane (PMVS). The AIBN-initiated curing reaction between the Si-H groups of PMHS generated Si-O-Si and Si-Si cross-links. In contrast, PMVS was cured via the formation of C-C bonds through "methyl-vinyl" and "vinyl-vinyl" mechanisms. Curing reactions were performed at 80-120 °C in air and confirmed by 13C and 29Si solid state NMR analyses and swelling trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA