Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 178(6): 1493-1508.e20, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31474370

RESUMEN

Clinical benefits of cytokine blockade in ileal Crohn's disease (iCD) are limited to a subset of patients. Here, we applied single-cell technologies to iCD lesions to address whether cellular heterogeneity contributes to treatment resistance. We found that a subset of patients expressed a unique cellular module in inflamed tissues that consisted of IgG plasma cells, inflammatory mononuclear phagocytes, activated T cells, and stromal cells, which we named the GIMATS module. Analysis of ligand-receptor interaction pairs identified a distinct network connectivity that likely drives the GIMATS module. Strikingly, the GIMATS module was also present in a subset of patients in four independent iCD cohorts (n = 441), and its presence at diagnosis correlated with failure to achieve durable corticosteroid-free remission upon anti-TNF therapy. These results emphasize the limitations of current diagnostic assays and the potential for single-cell mapping tools to identify novel biomarkers of treatment response and tailored therapeutic opportunities.


Asunto(s)
Enfermedad de Crohn/terapia , Citocinas/inmunología , Intestinos/patología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/patología , Humanos , Inmunoterapia/métodos , Fagocitos/patología , Análisis de la Célula Individual , Células del Estroma/patología , Linfocitos T/patología
2.
Proc Natl Acad Sci U S A ; 121(1): e2307086120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147543

RESUMEN

The salt-inducible kinases (SIK) 1-3 are key regulators of pro- versus anti-inflammatory cytokine responses during innate immune activation. The lack of highly SIK-family or SIK isoform-selective inhibitors suitable for repeat, oral dosing has limited the study of the optimal SIK isoform selectivity profile for suppressing inflammation in vivo. To overcome this challenge, we devised a structure-based design strategy for developing potent SIK inhibitors that are highly selective against other kinases by engaging two differentiating features of the SIK catalytic site. This effort resulted in SIK1/2-selective probes that inhibit key intracellular proximal signaling events including reducing phosphorylation of the SIK substrate cAMP response element binding protein (CREB) regulated transcription coactivator 3 (CRTC3) as detected with an internally generated phospho-Ser329-CRTC3-specific antibody. These inhibitors also suppress production of pro-inflammatory cytokines while inducing anti-inflammatory interleukin-10 in activated human and murine myeloid cells and in mice following a lipopolysaccharide challenge. Oral dosing of these compounds ameliorates disease in a murine colitis model. These findings define an approach to generate highly selective SIK1/2 inhibitors and establish that targeting these isoforms may be a useful strategy to suppress pathological inflammation.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas Serina-Treonina Quinasas , Ratones , Humanos , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citocinas , Inflamación/tratamiento farmacológico , Isoformas de Proteínas , Antiinflamatorios/farmacología , Inmunidad Innata , Factores de Transcripción
3.
Gut ; 72(7): 1271-1287, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36109152

RESUMEN

OBJECTIVE: IBD therapies and treatments are evolving to deeper levels of remission. Molecular measures of disease may augment current endpoints including the potential for less invasive assessments. DESIGN: Transcriptome analysis on 712 endoscopically defined inflamed (Inf) and 1778 non-inflamed (Non-Inf) intestinal biopsies (n=498 Crohn's disease, n=421 UC and 243 controls) in the Mount Sinai Crohn's and Colitis Registry were used to identify genes differentially expressed between Inf and Non-Inf biopsies and to generate a molecular inflammation score (bMIS) via gene set variance analysis. A circulating MIS (cirMIS) score, reflecting intestinal molecular inflammation, was generated using blood transcriptome data. bMIS/cirMIS was validated as indicators of intestinal inflammation in four independent IBD cohorts. RESULTS: bMIS/cirMIS was strongly associated with clinical, endoscopic and histological disease activity indices. Patients with the same histologic score of inflammation had variable bMIS scores, indicating that bMIS describes a deeper range of inflammation. In available clinical trial data sets, both scores were responsive to IBD treatment. Despite similar baseline endoscopic and histologic activity, UC patients with lower baseline bMIS levels were more likely treatment responders compared with those with higher levels. Finally, among patients with UC in endoscopic and histologic remission, those with lower bMIS levels were less likely to have a disease flare over time. CONCLUSION: Transcriptionally based scores provide an alternative objective and deeper quantification of intestinal inflammation, which could augment current clinical assessments used for disease monitoring and have potential for predicting therapeutic response and patients at higher risk of disease flares.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Humanos , Colitis Ulcerosa/patología , Inflamación/genética , Inflamación/patología , Enfermedad de Crohn/patología , Biopsia , Biomarcadores , Mucosa Intestinal/patología
4.
Clin Infect Dis ; 62(7): 879-886, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26740515

RESUMEN

BACKGROUND: Although chronic infections by typhoidal Salmonella are well-known, prolonged human infections by nontyphoidal Salmonella (NTS) are poorly characterized. METHODS: We retrospectively analyzed 48 345 culture-confirmed NTS infections that occurred in Israel 1995-2012. A case-control study was performed to identify risk factors associated with persistent infections. Whole-genome-sequencing, pulsed-field gel electrophoresis (PFGE), and a mouse infection model were used to study genetic and phenotypic differences between same-patient persistent, recurring isolates. RESULTS: In total, 1047 cases of persistent NTS infections, comprising 2.2% of all reported cases of salmonellosis, were identified. The persistence periods ranged between 30 days to 8.3 years. The majority (93%) of the persistently infected patients were immunocompetent, and 65% were symptomatic with relapsing diarrhea, indicating a distinct clinical manifestation from the asymptomatic carriage of typhoidal Salmonella. Four NTS serovars (Mbandaka, Bredeney, Infantis and Virchow) were found to be significantly more frequently associated with persistence than others. Comparative genomics between early and later isolates obtained from the same patients confirmed clonal infection and showed 0 to 10 SNPs between persistent isolates. A different composition of mobile genetic elements (plasmids and phages) or amino acid substitutions in global regulators was identified in multiple cases. These changes resulted in differences in phenotype and virulence between early and later same-patient isolates. CONCLUSIONS: These results illuminate the overlooked clinical manifestation of persistent salmonellosis that can serve as a human reservoir for NTS infections. Additionally, we demonstrate mechanisms of in-host microevolution and exhibit their potential to shape Salmonella pathogenicity, antimicrobial resistance and host-pathogen interactions.


Asunto(s)
Infecciones por Salmonella/epidemiología , Infecciones por Salmonella/microbiología , Salmonella enterica/genética , Salmonella enterica/patogenicidad , Adolescente , Adulto , Anciano , Animales , Niño , Preescolar , Enfermedad Crónica , ADN Bacteriano , Modelos Animales de Enfermedad , Femenino , Genoma Bacteriano/genética , Humanos , Lactante , Israel/epidemiología , Masculino , Ratones , Estudios Retrospectivos , Análisis de Secuencia de ADN , Adulto Joven
5.
Emerg Infect Dis ; 20(9): 1481-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25147968

RESUMEN

Salmonella enterica serotype Enteritidis is one of the most commonly reported causes of human salmonellosis. Its low genetic diversity, measured by fingerprinting methods, has made subtyping a challenge. We used whole-genome sequencing to characterize 125 S. enterica Enteritidis and 3 S. enterica serotype Nitra strains. Single-nucleotide polymorphisms were filtered to identify 4,887 reliable loci that distinguished all isolates from each other. Our whole-genome single-nucleotide polymorphism typing approach was robust for S. enterica Enteritidis subtyping with combined data for different strains from 2 different sequencing platforms. Five major genetic lineages were recognized, which revealed possible patterns of geographic and epidemiologic distribution. Analyses on the population dynamics and evolutionary history estimated that major lineages emerged during the 17th-18th centuries and diversified during the 1920s and 1950s.


Asunto(s)
Genoma Bacteriano , Infecciones por Salmonella/epidemiología , Infecciones por Salmonella/microbiología , Salmonella enteritidis/clasificación , Salmonella enteritidis/genética , Brotes de Enfermedades , Evolución Molecular , Humanos , Modelos Estadísticos , Filogenia , Polimorfismo de Nucleótido Simple , Prevalencia , Serogrupo
6.
J Clin Microbiol ; 52(6): 2078-88, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24719441

RESUMEN

Salmonella enterica is the leading etiologic agent of bacterial food-borne outbreaks worldwide. This ubiquitous species contains more than 2,600 serovars that may differ in their host specificity, clinical manifestations, and epidemiology. To characterize salmonellosis epidemiology in Israel and to study the association of nontyphoidal Salmonella (NTS) serovars with invasive infections, 48,345 Salmonella cases reported and serotyped at the National Salmonella Reference Center between 1995 and 2012 were analyzed. A quasi-Poisson regression was used to identify irregular clusters of illness, and pulsed-field gel electrophoresis in conjunction with whole-genome sequencing was applied to molecularly characterize strains of interest. Three hundred twenty-nine human salmonellosis clusters were identified, representing an annual average of 23 (95% confidence interval [CI], 20 to 26) potential outbreaks. We show that the previously unsequenced S. enterica serovar 9,12:l,v:- belongs to the B clade of Salmonella enterica subspecies enterica, and we show its frequent association with extraintestinal infections, compared to other NTS serovars. Furthermore, we identified the dissemination of two prevalent Salmonella enterica serovar Typhimurium DT104 clones in Israel, which are genetically distinct from other global DT104 isolates. Accumulatively, these findings indicate a severe underreporting of Salmonella outbreaks in Israel and provide insights into the epidemiology and genomics of prevalent serovars, responsible for recurring illness.


Asunto(s)
Infecciones por Salmonella/epidemiología , Infecciones por Salmonella/microbiología , Salmonella enterica/clasificación , Salmonella enterica/aislamiento & purificación , ADN Bacteriano/química , ADN Bacteriano/genética , Electroforesis en Gel de Campo Pulsado , Genotipo , Humanos , Israel/epidemiología , Datos de Secuencia Molecular , Tipificación Molecular , Análisis de Secuencia de ADN , Serogrupo
7.
Appl Environ Microbiol ; 80(22): 6943-53, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25192993

RESUMEN

Salmonella encounters various stresses in the environment and in the host during infection. The effects of cold (5°C, 48 h), peroxide (5 mM H2O2, 5 h) and acid stress (pH 4.0, 90 min) were tested on pathogenicity of Salmonella. Prior exposure of Salmonella to cold stress significantly (P < 0.05) increased adhesion and invasion of cultured intestinal epithelial (Caco-2) cells. This increased Salmonella-host cell association was also correlated with significant induction of several virulence-associated genes, implying an increased potential of cold-stressed Salmonella to cause an infection. In Caco-2 cells infected with cold-stressed Salmonella, genes involved in the electron transfer chain were significantly induced, but no simultaneous significant increase in expression of antioxidant genes that neutralize the effect of superoxide radicals or reactive oxygen species was observed. Increased production of caspase 9 and caspase 3/7 was confirmed during host cell infection with cold-stressed Salmonella. Further, a prophage gene, STM2699, induced in cold-stressed Salmonella and a spectrin gene, SPTAN1, induced in Salmonella-infected intestinal epithelial cells were found to have a significant contribution in increased adhesion and invasion of cold-stressed Salmonella in epithelial cells.


Asunto(s)
Células Epiteliales/microbiología , Intestinos/microbiología , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células CACO-2 , Frío , Regulación Bacteriana de la Expresión Génica , Humanos , Intestinos/citología , Salmonella typhimurium/fisiología , Estrés Fisiológico , Virulencia
8.
PLoS One ; 19(3): e0298419, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38452024

RESUMEN

Genetic screening of pools of mutants can reveal genetic determinants involved in complex biological interactions, processes, and systems. We previously constructed two single-gene deletion resources for Salmonella enterica serovar Typhimurium 14028s in which kanamycin (KanR) and chloramphenicol (CamR) cassettes were used to replace non-essential genes. We have now used lambda-red recombination to convert the antibiotic cassettes in these resources into a tetracycline-resistant (TetR) version where each mutant contains a different 21-base barcode flanked by Illumina Read1 and Read2 primer sequences. A motility assay of a pool of the entire library, followed by a single-tube processing of the bacterial pellet, PCR, and sequencing, was used to verify the performance of the barcoded TetR collection. The new resource is useful for experiments with defined subsets of barcoded mutant strains where biological bottlenecks preclude high numbers of founder bacteria, such as in animal infections. The TetR version of the library will also facilitate the construction of triple mutants by transduction. The resource of 6197 mutants covering 3490 genes is deposited at Biological and Emerging Infections Resources (beiresources.org).


Asunto(s)
Salmonella enterica , Salmonella typhimurium , Animales , Salmonella typhimurium/genética , Serogrupo , Eliminación de Gen , Antibacterianos , Tetraciclina , Bacterias
9.
Front Microbiol ; 15: 1387498, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812689

RESUMEN

Probiotic bacteria have been proposed as an alternative to antibiotics for the control of antimicrobial resistant enteric pathogens. The mechanistic details of this approach remain unclear, in part because pathogen reduction appears to be both strain and ecology dependent. Here we tested the ability of five probiotic strains, including some from common probiotic genera Lactobacillus and Bifidobacterium, to reduce binding of Salmonella enterica sv. Typhimurium to epithelial cells in vitro. Bifidobacterium longum subsp. infantis emerged as a promising strain; however, S. Typhimurium infection outcome in epithelial cells was dependent on inoculation order, with B. infantis unable to rescue host cells from preceding or concurrent infection. We further investigated the complex mechanisms underlying this interaction between B. infantis, S. Typhimurium, and epithelial cells using a multi-omics approach that included gene expression and altered metabolism via metabolomics. Incubation with B. infantis repressed apoptotic pathways and induced anti-inflammatory cascades in epithelial cells. In contrast, co-incubation with B. infantis increased in S. Typhimurium the expression of virulence factors, induced anaerobic metabolism, and repressed components of arginine metabolism as well as altering the metabolic profile. Concurrent application of the probiotic and pathogen notably generated metabolic profiles more similar to that of the probiotic alone than to the pathogen, indicating a central role for metabolism in modulating probiotic-pathogen-host interactions. Together these data imply crosstalk via small molecules between the epithelial cells, pathogen and probiotic that consistently demonstrated unique molecular mechanisms specific probiotic/pathogen the individual associations.

10.
BMC Genomics ; 14: 626, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24044554

RESUMEN

BACKGROUND: Hydrogen peroxide (H2O2) is a reactive oxygen species (ROS), which is part of the oxidative burst encountered upon internalization of Salmonella enterica serovar Typhimurium (S. Typhimurium) by phagocytic cells. It has previously been established that, the ArcAB two-component system plays a critical role in ROS resistance, but the genes regulated by the system remained undetermined to date. We therefore investigated the ArcA regulon in aerobically growing S. Typhimurium before and after exposure to H2O2 by querying gene expression and other physiological changes in wild type and ΔarcA strains. RESULTS: In the ΔarcA strain, expression of 292 genes showed direct or indirect regulation by ArcA in response to H2O2, of which 141were also regulated in aerobiosis, but in the opposite direction. Gene set enrichment analysis (GSEA) of the expression data from WT and ΔarcA strains, revealed that, in response to H2O2 challenge in aerobically grown cells, ArcA down regulated multiple PEP-PTS and ABC transporters, while up regulating genes involved in glutathione and glycerolipid metabolism and nucleotide transport. Further biochemical analysis guided by GSEA results showed that deletion of arcA during aerobic growth lead to increased reactive oxygen species (ROS) production which was concomitant with an increased NADH/NAD+ ratio. In absence of ArcA under aerobic conditions, H2O2 exposure resulted in lower levels of glutathione reductase activity, leading to a decreased GSH (reduced glutathione)/GSSG (oxidized glutathione) ratio. CONCLUSION: The ArcA regulon was defined in 2 conditions, aerobic growth and the combination of peroxide treatment and aerobic growth in S. Typhimurium. ArcA coordinates a response that involves multiple aspects of the carbon flux through central metabolism, which ultimately modulates the reducing potential of the cell.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Regulón , Salmonella typhimurium/genética , Transcriptoma , Aerobiosis , Salmonella typhimurium/metabolismo
11.
Appl Environ Microbiol ; 79(23): 7281-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24056458

RESUMEN

Salmonella is an important cause of bacterial food-borne gastroenteritis. Salmonella encounters multiple abiotic stresses during pathogen elimination methods used in food processing, and these stresses may influence its subsequent survivability within the host or in the environment. Upon ingestion, Salmonella is exposed to gastrointestinal acidity, a first line of the host innate defense system. This study tested the hypothesis that abiotic stresses encountered during food processing alter the metabolic mechanisms in Salmonella that enable survival and persistence during subsequent exposure to the host gastrointestinal acidic environment. Out of the four different abiotic stresses tested, viz., cold, peroxide, osmotic, and acid, preadaptation of the log-phase culture to cold stress (5°C for 5 h) significantly enhanced survival during subsequent acid stress (pH 4.0 for 90 min). The gene expression profile of Salmonella preadapted to cold stress revealed induction of multiple genes associated with amino acid metabolism, oxidative stress, and DNA repair, while only a few of the genes in the above-mentioned stress response and repair pathways were induced upon exposure to acid stress alone. Preadaptation to cold stress decreased the NAD+/NADH ratio and hydroxyl (OH·) radical formation compared with those achieved with the exposure to acid stress alone, indicating alteration of aerobic respiration and the oxidative state of the bacteria. The results from this study suggest that preadaptation to cold stress rescues Salmonella from the deleterious effect of subsequent acid stress exposure by induction of genes involved in stress response and repair pathways, by modification of aerobic respiration, and by redox modulation.


Asunto(s)
Ácidos/toxicidad , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Salmonella typhimurium/fisiología , Estrés Fisiológico , Adaptación Fisiológica , Frío , Perfilación de la Expresión Génica , NAD/metabolismo , Presión Osmótica , Estrés Oxidativo , Peróxidos/toxicidad , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/efectos de la radiación
12.
Front Cell Dev Biol ; 11: 1077350, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37009487

RESUMEN

The potential of mesenchymal stem cells (MSCs) for tissue repair and regeneration has garnered great attention. While MSCs are likely to interact with microbes at sites of tissue damage and inflammation, like in the gastrointestinal system, the consequences of pathogenic association on MSC activities have yet to be elucidated. This study investigated the effects of pathogenic interaction on MSC trilineage differentiation paths and mechanisms using model intracellular pathogen Salmonella enterica ssp enterica serotype Typhimurium. The examination of key markers of differentiation, apoptosis, and immunomodulation demonstrated that Salmonella altered osteogenic and chondrogenic differentiation pathways in human and goat adipose-derived MSCs. Anti-apoptotic and pro-proliferative responses were also significantly upregulated (p < 0.05) in MSCs during Salmonella challenge. These results together indicate that Salmonella, and potentially other pathogenic bacteria, can induce pathways that influence both apoptotic response and functional differentiation trajectories in MSCs, highlighting that microbes have a potentially significant role as influencers of MSC physiology and immune activity.

13.
Appl Environ Microbiol ; 78(17): 6153-60, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22752159

RESUMEN

Human milk contains antimicrobial factors such as lysozyme and lactoferrin that are thought to contribute to the development of an intestinal microbiota beneficial to host health. However, these factors are lacking in the milk of dairy animals. Here we report the establishment of an animal model to allow the dissection of the role of milk components in gut microbiota modulation and subsequent changes in overall and intestinal health. Using milk from transgenic goats expressing human lysozyme at 68%, the level found in human milk and young pigs as feeding subjects, the fecal microbiota was analyzed over time using 16S rRNA gene sequencing and the G2 Phylochip. The two methods yielded similar results, with the G2 Phylochip giving more comprehensive information by detecting more OTUs. Total community populations remained similar within the feeding groups, and community member diversity was changed significantly upon consumption of lysozyme milk. Levels of Firmicutes (Clostridia) declined whereas those of Bacteroidetes increased over time in response to the consumption of lysozyme-rich milk. The proportions of these major phyla were significantly different (P < 0.05) from the proportions seen with control-fed animals after 14 days of feeding. Within phyla, the abundance of bacteria associated with gut health (Bifidobacteriaceae and Lactobacillaceae) increased and the abundance of those associated with disease (Mycobacteriaceae, Streptococcaceae, Campylobacterales) decreased with consumption of lysozyme milk. This study demonstrated that a single component of the diet with bioactivity changed the gut microbiome composition. Additionally, this model enabled the direct examination of the impact of lysozyme on beneficial microbe enrichment versus detrimental microbe reduction in the gut microbiome community.


Asunto(s)
Antibacterianos/metabolismo , Bacterias/clasificación , Bacterias/efectos de los fármacos , Biota , Heces/microbiología , Leche/enzimología , Muramidasa/metabolismo , Animales , Animales Modificados Genéticamente , Bacterias/genética , Cabras , Humanos , Modelos Animales , Porcinos
14.
Clin Infect Dis ; 62(10): 1326-7, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26980876
15.
Microbiol Resour Announc ; 8(18)2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31048396

RESUMEN

Here we present a draft genome sequence of laboratory strain Serratia marcescens SM6. Using the antiSMASH 5.0 prediction tool, we identified five biosynthetic gene clusters involved in secondary metabolite production (two siderophores and a biosurfactant serratamolide, a glucosamine derivative, and a thiopeptide). Whole-genome sequencing information will be useful for the detailed study of metabolites produced by Serratia marcescens.

16.
Appl Environ Microbiol ; 74(7): 2254-8, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18263751

RESUMEN

We developed a method for concentrating pathogens from samples without enrichment. Immobilized gangliosides concentrated bacteria for detection with real-time PCR. A sensitivity of approximately 4 CFU/ml (3 h) in samples without competing microflora was achieved. Samples with competing microflora had a sensitivity of 40,000 CFU/ml. The variance was less than one cycle.


Asunto(s)
Bacterias/aislamiento & purificación , Técnicas Bacteriológicas , ADN Bacteriano/análisis , Gangliósidos/análisis , Reacción en Cadena de la Polimerasa/métodos , Bacterias/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Sensibilidad y Especificidad
17.
Front Microbiol ; 9: 1585, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30072965

RESUMEN

Bacterial surface ligands mediate interactions with the host cell during association that determines the specific outcome for the host-microbe association. The association begins with receptors on the host cell binding ligands on the microbial cell to form a partnership that initiates responses in both cells. Methods to determine the specific cognate partnerships are lacking. Determining these molecular interactions between the host and microbial surfaces are difficult, yet crucial in defining biologically important events that are triggered during association of the microbiome, and critical in defining the initiating signal from the host membrane that results in pathology or commensal association. In this study, we designed an approach to discover cognate host-microbe receptor/ligand pairs using a covalent cross-linking strategy with whole cells. Protein/protein cross-linking occurred when the interacting molecules were within 9-12 Å, allowing for identification of specific pairs of proteins from the host and microbe that define the molecular interaction during association. To validate the method three different bacteria with three previously known protein/protein partnerships were examined. The exact interactions were confirmed and led to discovery of additional partnerships that were not recognized as cognate partners, but were previously reported to be involved in bacterial interactions. Additionally, three unknown receptor/ligand partners were discovered and validated with in vitro infection assays by blocking the putative host receptor and deleting the bacterial ligand. Subsequently, Salmonella enterica sv. Typhimurium was cross-linked to differentiated colonic epithelial cells (caco-2) to discover four previously unknown host receptors bound to three previously undefined host ligands for Salmonella. This approach resulted in a priori discovery of previously unknown and biologically important molecules for host/microbe association that were casually reported to mediate bacterial invasion. The whole cell cross-linking approach promises to enable discovery of possible targets to modulate interaction of the microbiome with the host that are important in infection and commensalism, both of with initiate a host response.

18.
PLoS One ; 11(2): e0150094, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26914580

RESUMEN

Several RNA viruses such as astrovirus, rotavirus, reovirus and parvovirus have been detected in both healthy and diseased commercial poultry flocks. The aim of this study was to characterize (a) the development of the RNA viral community in the small intestines of healthy broiler chickens from hatch through 6 weeks of age (market age) and (b) the contribution of the breeder source vs. bird age in development of the community structure. Intestinal tissue samples were harvested from breeders and their progeny, processed for viral RNA extraction and sequenced using Illumina Hiseq sequencing technology resulting in 100 bp PE reads. The results from this study indicated that the breeder source influenced the RNA viral community only at hatch but later environment i.e. bird age had the more significant effect. The most abundant RNA viral family detected at 2, 4 and 6 weeks of age was Astroviridae, which decreased in abundance with age while the abundance of Picornaviridae increased with age.


Asunto(s)
Pollos/virología , Microbioma Gastrointestinal/genética , Intestino Delgado/virología , Virus ARN/crecimiento & desarrollo , ARN Viral/genética , Factores de Edad , Animales , Secuencia de Bases , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Tipificación Molecular , Enfermedades de las Aves de Corral/virología , Virus ARN/clasificación , Virus ARN/genética , Análisis de Secuencia de ARN/veterinaria
19.
Genome Announc ; 4(4)2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27389263

RESUMEN

We report a 4.58 Mbp draft genome sequence of Salmonella enterica subsp. enterica serovar Kiambu strain CRJJGF_00061 isolated from cattle in 2004.

20.
Genome Announc ; 4(4)2016 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-27417829

RESUMEN

Here, we report a 4.98 Mbp draft genome sequence of Salmonella enterica subsp. enterica serovar Lille strain CRJJGF_000101, isolated from ground beef in 2007.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA