Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036299

RESUMEN

BACKGROUND: Only 35.6%-50.8% of patients with Mycobacterium avium complex (MAC) pulmonary disease achieve sustained sputum culture conversion (SSCC) on treatment with the azithromycin-ethambutol-rifabutin standard of care (SOC). We tested the efficacy of ceftriaxone, a ß-lactam with a lung penetration ratio of 12.18-fold. METHODS: We mimicked lung concentration-time profiles of seven ceftriaxone once-daily doses for 28 days in the hollow fiber system model of intracellular MAC (HFS- MAC). Monte Carlo experiments were used for dose selection.We also compared the once-daily ceftriaxone monotherapy to three-drug SOC against five MAC clinical isolates in HFS-MAC using γ (kill)-slopes. Results were translated to SSCC rates. RESULTS: Ceftriaxone killed 1.02-3.82 log10 cfu/mL in dose-response studies. Ceftriaxone 2G once-daily was identified as the optimal dose. Ceftriaxone killed all five strains below day 0 versus 2/5 for SOC. The median γ (95% confidence interval) was 0.49(0.47-0.52) log10 cfu/mL/day for ceftriaxone and 0.38(0.34-0.43) log10 cfu/mL/day for SOC. In patients, the SOC was predicted to achieve SSCC rates of 39.3%(36%-42%) at 6 months (similar to meta-analyses results). The SOC SSCC was 50% at 8.18(3.64-27.66) months versus 3.58(2.20-7.23) months for ceftriaxone. Thus, ceftriaxone shortened time-to-SSCC 2.35-fold compared to SOC. CONCLUSION: Ceftriaxone is a promising agent for creation of short-course chemotherapy.

2.
Artículo en Inglés | MEDLINE | ID: mdl-33558291

RESUMEN

Standard therapy [isoniazid, rifampin, ethambutol], with or without a macrolide, for pulmonary Mycobacterium kansasii lasts more than a year. Therefore, shorter treatment duration regimens are required. We used data from 32 Taiwanese patients treated with standard therapy who were followed using repetitive sampling-based sputum Mkn time-to-positivity in liquid cultures to calculate kill slopes [γ] based on ordinary differential equations and time-to-extinction of each patient's bacterial burden. The γ was 0.18 [95% Confidence Interval (CI): 0.16-0.20] log10 CFU/mL/day on standard therapy. Next, we identified Mkn time-to-extinction in the hollow fiber system model of pulmonary M. kansasii disease [HFS-Mkn] treated with standard therapy, which was a γ of 0.60 [95% CI: 0.45-0.69) log10 CFU/mL/day. The γs and time-to-extinctions between the two datasets formed structure-preserving maps based on category theory: thus, we could map them from one to the other using morphisms. This mapping identified a multistep non-linear transformation-factor for time-to-extinction from HFS-Mkn to patients. Next, a head-to-head study in the HFS-Mkn identified median time-to-extinction for standard therapy of 38.7 [95% CI: 29.1-53.2) days, isoniazid-rifampin-ethambutol-moxifloxacin of 21.7 [95% CI: 19.1-25) days, isoniazid-rifampin-moxifloxacin of 22 [96% CI: 20.1-24.5) days, and rifampin-moxifloxacin-tedizolid of 20.7 [95% CI:18.5-29) days. Our transformation-factor based translation predicted the proportion of patients of 90.7 [88.74-92.35)% achieving cure with standard therapy at 12 months, and 6-months cure rates of 99.8 [95% CI: 99.27-99.95)% for isoniazid-rifampin-ethambutol-moxifloxacin, 92.2 [90.37-93.71)% for isoniazid-rifampin-moxifloxacin, and 99.9 [99.44-99.99)% for rifampin-moxifloxacin-tedizolid. Thus, rifampin-moxifloxacin-tedizolid and isoniazid-rifampin-ethambutol-moxifloxacin are predicted to be short-course chemotherapy regimens for pulmonary M. kansasii disease.

3.
J Antimicrob Chemother ; 78(4): 953-964, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36794692

RESUMEN

BACKGROUND: The hollow-fibre system model of tuberculosis (HFS-TB) has been endorsed by regulators; however, application of HFS-TB requires a thorough understanding of intra- and inter-team variability, statistical power and quality controls. METHODS: Three teams evaluated regimens matching those in the Rapid Evaluation of Moxifloxacin in Tuberculosis (REMoxTB) study, plus two high-dose rifampicin/pyrazinamide/moxifloxacin regimens, administered daily for up to 28 or 56 days against Mycobacterium tuberculosis (Mtb) under log-phase growth, intracellular growth or semidormant growth under acidic conditions. Target inoculum and pharmacokinetic parameters were pre-specified, and the accuracy and bias at achieving these calculated using percent coefficient of variation (%CV) at each sampling point and two-way analysis of variance (ANOVA). RESULTS: A total of 10 530 individual drug concentrations, and 1026 individual cfu counts were measured. The accuracy in achieving intended inoculum was >98%, and >88% for pharmacokinetic exposures. The 95% CI for the bias crossed zero in all cases. ANOVA revealed that the team effect accounted for <1% of variation in log10 cfu/mL at each timepoint. The %CV in kill slopes for each regimen and different Mtb metabolic populations was 5.10% (95% CI: 3.36%-6.85%). All REMoxTB arms exhibited nearly identical kill slopes whereas high dose regimens were 33% faster. Sample size analysis revealed that at least three replicate HFS-TB units are needed to identify >20% difference in slope, with a power of >99%. CONCLUSIONS: HFS-TB is a highly tractable tool for choosing combination regimens with little variability between teams, and between replicates.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Antituberculosos/farmacocinética , Moxifloxacino/farmacología , Reproducibilidad de los Resultados , Modelos Biológicos , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Quimioterapia Combinada
4.
Artículo en Inglés | MEDLINE | ID: mdl-33106263

RESUMEN

Pharmacokinetic (PK) and pharmacodynamic (PD) analyses were conducted to determine the cumulative fraction of response (CFR) for 100 mg twice-daily (BID) and 200 mg once-daily (QD) delamanid in patients with multidrug-resistant tuberculosis (MDR-TB), using a pharmacodynamic target (PDT) that achieves 80% of maximum efficacy. First, in the mouse model of chronic TB, the PK/PD index for delamanid efficacy was determined to be area under the drug concentration-time curve over 24 h divided by MIC (AUC0-24/MIC), with a PDT of 252. Second, in the hollow-fiber system model of tuberculosis, plasma-equivalent PDTs were identified as an AUC0-24/MIC of 195 in log-phase bacteria and 201 in pH 5.8 cultures. Third, delamanid plasma AUC0-24/MIC and sputum bacterial decline data from two early bactericidal activity trials identified a clinical PDT of AUC0-24/MIC of 171. Finally, the CFRs for the currently approved 100-mg BID dose were determined to be above 95% in two MDR-TB clinical trials. The CFR for the 200-mg QD dose, evaluated in a trial in which delamanid was administered as 100 mg BID for 8 weeks plus 200 mg QD for 18 weeks, was 89.3% based on the mouse PDT and >90% on the other PDTs. QTcF (QTc interval corrected for heart rate by Fridericia's formula) prolongation was approximately 50% lower for the 200 mg QD dose than the 100 mg BID dose. In conclusion, while CFRs of 100 mg BID and 200 mg QD delamanid were close to or above 90% in patients with MDR-TB, more-convenient once-daily dosing of delamanid is feasible and likely to have less effect on QTcF prolongation.


Asunto(s)
Mycobacterium tuberculosis , Nitroimidazoles , Tuberculosis Resistente a Múltiples Medicamentos , Animales , Antituberculosos/uso terapéutico , Humanos , Ratones , Nitroimidazoles/uso terapéutico , Oxazoles , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
5.
J Antimicrob Chemother ; 75(2): 392-399, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31713607

RESUMEN

OBJECTIVES: Animal models have suggested that the combination of pretomanid with pyrazinamide and moxifloxacin (PaMZ) may shorten TB therapy duration to 3-4 months. Here, we tested that in the hollow-fibre system model of TB (HFS-TB). METHODS: A series of HFS-TB experiments were performed to compare the kill rates of the PaMZ regimen with the standard three-drug combination therapy. HFS-TB experiments were performed with bacilli in log-phase growth treated for 28 days, intracellular bacilli treated daily for 28 days and semi-dormant Mycobacterium tuberculosis treated with daily therapy for 56 days for sterilizing effect. Next, time-to-extinction equations were employed, followed by morphism transformation and Latin hypercube sampling, to determine the proportion of patients who achieved a time to extinction of 3, 4 or 6 months with each regimen. RESULTS: Using linear regression, the HFS-TB sterilizing effect rates of the PaMZ regimen versus the standard-therapy regimen during the 56 days were 0.18 (95% credible interval=0.13-0.23) versus 0.15 (95% credible interval=0.08-0.21) log10 cfu/mL/day, compared with 0.16 (95% credible interval=0.13-0.18) versus 0.11 (95% credible interval=0.09-0.13) log10 cfu/mL/day in the Phase II clinical trial, respectively. Using time-to-extinction and Latin hypercube sampling modelling, the expected percentages of patients in which the PaMZ regimen would achieve sterilization were 40.37% (95% credible interval=39.1-41.34) and 72.30% (95% credible interval=71.41-73.17) at 3 and 4 months duration of therapy, respectively, versus 93.67% (95% credible interval=93.18-94.13) at 6 months for standard therapy. CONCLUSIONS: The kill rates of the PaMZ regimen were predicted to be insufficient to achieve cure in less than 6 months in most patients.


Asunto(s)
Moxifloxacino/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Nitroimidazoles/uso terapéutico , Pirazinamida/uso terapéutico , Tuberculosis/tratamiento farmacológico , Antituberculosos/uso terapéutico , Quimioterapia Combinada , Humanos , Matemática
6.
J Infect Dis ; 219(6): 975-985, 2019 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-30597040

RESUMEN

Drug-resistant tuberculosis represents a global emergency, requiring new drugs. We found that minocycline was highly potent in laboratory strains of Mycobacterium tuberculosis and that 30 drug-susceptible and multidrug/extensively drug-resistant clinical strains were susceptible to clinically achievable concentrations. In the hollow fiber system model, lung concentration-time profiles of 7 mg/kg/day human-equivalent minocycline dose achieved bacterial kill rates equivalent to those of first-line antituberculosis agents. Minocycline killed extracellular bacilli directly. Minocycline also killed intracellular bacilli indirectly, via concentration-dependent granzyme A-driven apoptosis. Moreover, minocycline demonstrated dose-dependent antiinflammatory activity and downregulation of extracellular matrix-based remodeling pathways and, thus, could protect patients from tuberculosis immunopathology. In RNA sequencing of repetitive samples from the hollow fiber system and in independent protein abundance experiments, minocycline demonstrated dose-dependent inhibition of sonic hedgehog-patched-gli signaling. These findings have implications for improved lung remodeling and for dual immunomodulation and direct microbial kill-based treatment shortening regimens for drug-susceptible and drug-resistant latent and active M. tuberculosis infection.


Asunto(s)
Antituberculosos/farmacología , Minociclina/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Granzimas/metabolismo , Proteínas Hedgehog , Humanos , Pruebas de Sensibilidad Microbiana , Transducción de Señal , Células THP-1 , Tuberculosis/inmunología , Tuberculosis/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/inmunología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
7.
J Antimicrob Chemother ; 74(6): 1607-1617, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30820554

RESUMEN

BACKGROUND: MDR-TB and XDR-TB have poor outcomes. OBJECTIVES: To examine the efficacy of tigecycline monotherapy in the hollow fibre system model of TB. METHODS: We performed pharmacokinetic/pharmacodynamic studies using tigecycline human-like concentration-time profiles in the hollow fibre system model of TB in five separate experiments using Mycobacterium tuberculosis in log-phase growth or as semi-dormant or intracellular bacilli, as monotherapy. We also compared efficacy with the isoniazid/rifampicin/pyrazinamide combination (standard therapy). We then applied extinction mathematics, morphisms and Latin hypercube sampling to identify duration of therapy with tigecycline monotherapy. RESULTS: The median tigecycline MIC for 30 M. tuberculosis clinical and laboratory isolates (67% MDR/XDR) was 2 mg/L. Tigecycline monotherapy was highly effective in killing M. tuberculosis in log-phase-growth and semi-dormant and intracellular M. tuberculosis. Once-a-week dosing had the same efficacy as daily therapy for the same cumulative dose; thus, tigecycline efficacy was linked to the AUC0-24/MIC ratio. Tigecycline replacement by daily minocycline after 4 weeks of therapy was effective in sterilizing bacilli. The AUC0-24/MIC ratio associated with optimal kill was 42.3. Tigecycline monotherapy had a maximum sterilizing effect (day 0 minus day 28) of 3.06 ±âŸ0.20 log10 cfu/mL (r2 = 0.92) compared with 3.92 ±âŸ0.45 log10 cfu/mL (r2 = 0.80) with optimized standard therapy. In our modelling, at a tigecycline monotherapy duration of 12 months, the proportion of patients with XDR-TB who reached bacterial population extinction was 64.51%. CONCLUSIONS: Tigecycline could cure patients with XDR-TB or MDR-TB who have failed recommended therapy. Once-a-week tigecycline could also replace second-line injectables in MDR-TB regimens.


Asunto(s)
Antituberculosos/administración & dosificación , Mycobacterium tuberculosis/efectos de los fármacos , Tigeciclina/administración & dosificación , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Antituberculosos/farmacocinética , Esquema de Medicación , Monitoreo de Drogas , Quimioterapia Combinada , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Teóricos , Método de Montecarlo , Tigeciclina/farmacocinética , Distribución Tisular
8.
J Antimicrob Chemother ; 74(7): 1952-1961, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31039251

RESUMEN

OBJECTIVES: Our aim was to identify the pharmacokinetic/pharmacodynamic parameters of minocycline in the hollow-fibre system (HFS) model of pulmonary Mycobacterium avium complex (MAC) and to identify the optimal clinical dose. METHODS: Minocycline MICs for 55 MAC clinical isolates from the Netherlands were determined. We also co-incubated primary isolated macrophages infected with MAC with minocycline. Next, we performed a 28 day HFS-MAC model dose-response study in which we mimicked pulmonary concentration-time profiles achieved in patients. The HFS-MAC model was sampled at intervals to determine the minocycline pharmacokinetics and MAC burden. We identified the AUC0-24/MIC ratios associated with 1.0 log10 cfu/mL kill below day 0 (stasis), defined as a bactericidal effect. We then performed 10000 Monte Carlo experiments to identify the optimal dose for a bactericidal effect in patients. RESULTS: The MIC for 50% and 90% of cumulative clinical isolates was 8 and 64 mg/L, respectively. Minocycline decreased MAC bacterial burden below stasis in primary isolated macrophages. In the HFS-MAC model, minocycline achieved a microbial kill of 3.6 log10 cfu/mL below stasis. The AUC0-24/MIC exposure associated with a bactericidal effect was 59. Monte Carlo experiments identified a minocycline susceptibility MIC breakpoint of 16 mg/L. At this proposed breakpoint, the clinical dose of 200 mg/day achieved the bactericidal effect exposure target in ∼50% of patients, while 400 mg/day achieved this in 73.6% of patients, in Monte Carlo experiments. CONCLUSIONS: Minocycline at a dose of 400 mg/day is expected to be bactericidal. We propose a clinical trial for validation.


Asunto(s)
Teorema de Bayes , Minociclina/uso terapéutico , Modelos Biológicos , Complejo Mycobacterium avium/efectos de los fármacos , Infección por Mycobacterium avium-intracellulare/tratamiento farmacológico , Infección por Mycobacterium avium-intracellulare/microbiología , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Bacteriana/microbiología , Algoritmos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Línea Celular , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Pruebas de Sensibilidad Microbiana , Minociclina/farmacología , Método de Montecarlo
9.
Clin Infect Dis ; 67(suppl_3): S359-S364, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30496465

RESUMEN

Background: One approach that could increase the efficacy and reduce the duration of antituberculosis therapy is pharmacokinetics/pharmacodynamics-based optimization of doses. However, this could increase toxicity. Methods: We mimicked the concentration-time profiles achieved by human equivalent doses of moxifloxacin 800 mg/day, rifampin 1800 mg/day, and pyrazinamide 4000 mg/day (high-dose regimen) vs isoniazid 300 mg/day, rifampin 600 mg/day, and pyrazinamide 2000 mg/day (standard therapy) in bactericidal and sterilizing effect studies in the hollow fiber system model of tuberculosis (HFS-TB). In an intracellular Mycobacterium tuberculosis (Mtb) HFS-TB experiment, we added a 3-dimensional human organotypic liver to determine potential hepatotoxicity of the high-dose regimen, based on lactate dehydrogenase (LDH). Treatment lasted 28 days and Mtb bacterial burden was based on colony counts. We calculated the time to extinction (TTE) of the Mtb population in the HFS-TB and used morphism-based transformation and Latin hypercube sampling to identify the minimum therapy duration in patients. Results: The kill rate of standard therapy in the bactericidal effect and sterilizing effect experiments were 0.97 (95% confidence interval [CI], .91-.99) log10 colony-forming units (CFU)/mL/day, and 0.56 (95% CI, .49-.59) log10 CFU/mL/day, respectively. The high-dose regimen's bactericidal and sterilizing effect kill rates were 0.99 (95% CI, .96-.99) log10 CFU/mL/day and 0.72 (95% CI, .56-.79) log10 CFU/mL/day, respectively. The upper confidence bound for TTE in patients was 4.5-5 months for standard therapy vs 3.7 months on the high-dose regimen. There were no differences in LDH concentrations between the 2 regimens at any time point (P > .05). Conclusions: The high-dose regimen may moderately shorten therapy without increased hepatotoxicity compared to standard therapy.


Asunto(s)
Antituberculosos/administración & dosificación , Moxifloxacino/administración & dosificación , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinamida/administración & dosificación , Rifampin/administración & dosificación , Tuberculosis/tratamiento farmacológico , Antituberculosos/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas , Relación Dosis-Respuesta a Droga , Humanos , Hígado/efectos de los fármacos , Modelos Biológicos , Pirazinamida/efectos adversos , Rifampin/efectos adversos , Factores de Tiempo , Tuberculosis/microbiología
10.
Clin Infect Dis ; 67(suppl_3): S336-S341, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30496463

RESUMEN

Background: Linezolid exhibits remarkable sterilizing effect in tuberculosis; however, a large proportion of patients develop serious adverse events. The congener tedizolid could have a better side-effect profile, but its sterilizing effect potential is unknown. Methods: We performed a 42-day tedizolid exposure-effect and dose-fractionation study in the hollow fiber system model of tuberculosis for sterilizing effect, using human-like intrapulmonary pharmacokinetics. Bacterial burden was examined using time to positivity (TTP) and colony-forming units (CFUs). Exposure-effect was examined using the inhibitory sigmoid maximal kill model. The exposure mediating 80% of maximal kill (EC80) was defined as the target exposure, and the lowest dose to achieve EC80 was identified in 10000-patient Monte Carlo experiments. The dose was also examined for probability of attaining concentrations associated with mitochondrial enzyme inhibition. Results: At maximal effect, tedizolid monotherapy totally eliminated 7.1 log10 CFU/mL Mycobacterium tuberculosis over 42 days; however, TTP still demonstrated some growth. Once-weekly tedizolid regimens killed as effectively as daily regimens, with an EC80 free drug 0- to 24-hour area under the concentration-time curve-to-minimum inhibitory concentration (MIC) ratio of 200. An oral tedizolid of 200 mg/day achieved the EC80 in 92% of 10000 patients. The susceptibility breakpoint was an MIC of 0.5 mg/L. The 200 mg/day dose did not achieve concentrations associated with mitochondrial enzyme inhibition. Conclusions: Tedizolid exhibits dramatic sterilizing effect and should be examined for pulmonary tuberculosis. A tedizolid dose of 200 mg/day or 700 mg twice a week is recommended for testing in patients; the intermittent tedizolid dosing schedule could be much safer than daily linezolid.


Asunto(s)
Antibacterianos/farmacocinética , Linezolid/farmacocinética , Mycobacterium tuberculosis/efectos de los fármacos , Oxazolidinonas/farmacocinética , Tetrazoles/farmacocinética , Tuberculosis Pulmonar/tratamiento farmacológico , Antibacterianos/administración & dosificación , Humanos , Linezolid/administración & dosificación , Pruebas de Sensibilidad Microbiana , Método de Montecarlo , Oxazolidinonas/administración & dosificación , Tetrazoles/administración & dosificación
11.
Clin Infect Dis ; 67(suppl_3): S342-S348, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30496456

RESUMEN

Background: Children are often neglected during early development of antituberculosis agents, and most receive treatment after it is first tested in adults. However, very young children have tuberculosis that differs in many respects from adult cavitary pneumonia and could have different toxicity profiles to drugs. Linezolid is effective against intracellular tuberculosis, a common manifestation in young children. However, linezolid has considerable toxicity due to inhibition of mitochondrial enzymes. Tedizolid could be a replacement if it shows equal efficacy and reduced toxicity. Methods: We performed tedizolid dose-effect studies in the hollow fiber system model of intracellular tuberculosis. We measured linezolid concentrations, colony-forming units (CFU), time-to-positivity, and monocyte viability and performed RNA sequencing on infected cells collected from repetitive sampling of each system. We also compared efficacy of tedizolid vs linezolid and vs tedizolid-moxifloxacin combination. Results: There was no downregulation of mitochondrial enzyme genes, with a tedizolid 0-24 hour area under the concentration-time curve (AUC0-24) of up to 90 mg*h/L. Instead, high exposures led to increased mitochondrial gene expression and monocyte survival. The AUC0-24 to minimum inhibitory concentration ratio associated with 80% of maximal bacterial kill (EC80) was 184 by CFU/mL (r2 = 0.96) and 189 by time-to-positivity (r2 = 0.99). Tedizolid EC80 killed 4.0 log10 CFU/mL higher than linezolid EC80. The tedizolid-moxifloxacin combination had a bacterial burden elimination rate constant of 0.27 ± 0.05 per day. Conclusions: Tedizolid demonstrated better efficacy than linezolid, without the mitochondrial toxicity gene or cytotoxicity signatures encountered with linezolid. Tedizolid-moxifloxacin combination had a high bacterial elimination rate.


Asunto(s)
Antibacterianos/farmacocinética , Moxifloxacino/farmacocinética , Mycobacterium tuberculosis/efectos de los fármacos , Oxazolidinonas/farmacocinética , Tetrazoles/farmacocinética , Tuberculosis/tratamiento farmacológico , Antibacterianos/uso terapéutico , Niño , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Moxifloxacino/uso terapéutico , Oxazolidinonas/uso terapéutico , Tetrazoles/uso terapéutico , Tuberculosis/microbiología
12.
Clin Infect Dis ; 67(suppl_3): S284-S292, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30496458

RESUMEN

Background: In the experimental arm of the OFLOTUB trial, gatifloxacin replaced ethambutol in the standard 4-month regimen for drug-susceptible pulmonary tuberculosis. The study included a nested pharmacokinetic (PK) study. We sought to determine if PK variability played a role in patient outcomes. Methods: Patients recruited in the trial were followed for 24 months, and relapse ascertained using spoligotyping. Blood was drawn for drug concentrations on 2 separate days during the first 2 months of therapy, and compartmental PK analyses was performed. Failure to attain sustained sputum culture conversion at the end of treatment, relapse, or death during follow-up defined therapy failure. In addition to standard statistical analyses, we utilized an ensemble of machine-learning methods to identify patterns and predictors of therapy failure from among 27 clinical and laboratory features. Results: Of 126 patients, 95 (75%) had favorable outcomes and 19 (15%) failed therapy, relapsed, or died. Pyrazinamide and rifampicin peak concentrations and area under the concentration-time curves (AUCs) were ranked higher (more important) than gatifloxacin AUCs. The distribution of individual drug concentrations and their ranking varied significantly between South African and West African trial sites; however, drug concentrations still accounted for 31% and 75% of variance of outcomes, respectively. We identified a 3-way antagonistic interaction of pyrazinamide, gatifloxacin, and rifampicin concentrations. These negative interactions disappeared if rifampicin peak concentration was above 7 mg/L. Conclusions: Concentration-dependent antagonism contributed to death, relapse, and therapy failure but was abrogated by high rifampicin concentrations. Therefore, increasing both rifampin and gatifloxacin doses could improve outcomes. Clinical Trials Registration: NCT00216385.


Asunto(s)
Antituberculosos/farmacocinética , Inteligencia Artificial , Gatifloxacina/farmacocinética , Pirazinamida/farmacocinética , Rifampin/farmacocinética , Tuberculosis Pulmonar/tratamiento farmacológico , Adolescente , Adulto , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
13.
Clin Infect Dis ; 67(suppl_3): S349-S358, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30496464

RESUMEN

Background: A major challenge in medicine is translation of preclinical model findings to humans, especially therapy duration. One major example is recent shorter-duration therapy regimen failures in tuberculosis. Methods: We used set theory mapping to develop a computational/modeling framework to map the time it takes to extinguish the Mycobacterium tuberculosis population on chemotherapy from multiple hollow fiber system model of tuberculosis (HFS-TB) experiments to that observed in patients. The predictive accuracy of the derived translation transformations was then tested using data from 108 HFS-TB Rapid Evaluation of Moxifloxacin in Tuberculosis (REMoxTB) units, including 756 colony-forming units (CFU)/mL. Derived transformations, and Latin hypercube sampling-guided simulations were used to predict cure and relapse after 4 and 6 months of therapy. Outcomes were compared to observations, in 1932 patients in the REMoxTB clinical trial. Results: HFS-TB serial bacillary burden and serial sputum data in the derivation dataset formed a structure-preserving map. Bactericidal effect was mapped with a single step transformation, while the sterilizing effect was mapped with a 3-step transformation function. Using the HFS-TB REMoxTB data, we accurately predicted the proportion of patients cured in the 4-month REMoxTB clinical trial. Model-predicted vs clinical trial observations were (i) the ethambutol arm (77.0% [95% confidence interval {CI}, 74.4%-79.6%] vs 77.7% [95% CI, 74.3%-80.9%]) and (ii) the isoniazid arm (76.4% [95% CI, 73.9%-79.0%] vs 79.5% [95% CI, 76.1%-82.5%]). Conclusions: We developed a method to translate duration of therapy outcomes from preclinical models to tuberculosis patients.


Asunto(s)
Antituberculosos/farmacología , Etambutol/farmacología , Isoniazida/farmacología , Moxifloxacino/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Ensayos Clínicos como Asunto , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Humanos , Modelos Biológicos , Recurrencia , Esputo/microbiología , Tuberculosis/microbiología
14.
Clin Infect Dis ; 67(suppl_3): S317-S326, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30496457

RESUMEN

Background: Ethionamide is used to treat multidrug-resistant tuberculosis (MDR-TB). The antimicrobial pharmacokinetics/pharmacodynamics, the contribution of ethionamide to the multidrug regimen, and events that lead to acquired drug resistance (ADR) are unclear. Methods: We performed a multidose hollow fiber system model of tuberculosis (HFS-TB) study to identify the 0-24 hour area under the concentration-time curve (AUC0-24) to minimum inhibitory concentration (MIC) ratios that achieved maximal kill and ADR suppression, defined as target exposures. Ethionamide-resistant isolates underwent whole-genome and targeted Sanger sequencing. We utilized Monte Carlo experiments (MCEs) to identify ethionamide doses that would achieve the target exposures in 10000 patients with pulmonary tuberculosis. We also identified predictors of time-to-sputum conversion in Tanzanian patients on ethionamide- and levofloxacin-based regimens using multivariate adaptive regression splines (MARS). Results: An AUC0-24/MIC >56.2 was identified as the target exposure in the HFS-TB. Early efflux pump induction to ethionamide monotherapy led to simultaneous ethambutol and isoniazid ADR, which abrogated microbial kill of an isoniazid-ethambutol-ethionamide regimen. Genome sequencing of isolates that arose during ethionamide monotherapy revealed mutations in both ethA and embA. In MCEs, 20 mg/kg/day achieved the AUC0-24/MIC >56.2 in >95% of patients, provided the Sensititre assay MIC was <2.5 mg/L. In the clinic, MARS revealed that ethionamide Sensititre MIC had linear negative relationships with time-to-sputum conversion until an MIC of 2.5 mg/L, above which patients with MDR-TB failed combination therapy. Conclusions: Ethionamide is an important contributor to MDR-TB treatment regimens, at Sensititre MIC <2.5 mg/L. Suboptimal ethionamide exposures led to efflux pump-mediated ADR.


Asunto(s)
Antituberculosos/farmacocinética , Etionamida/farmacocinética , Isoniazida/farmacocinética , Levofloxacino/farmacocinética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Pulmonar/tratamiento farmacológico , Antituberculosos/administración & dosificación , Etionamida/administración & dosificación , Humanos , Isoniazida/administración & dosificación , Levofloxacino/administración & dosificación , Método de Montecarlo , Mutación , Esputo/microbiología
15.
Clin Infect Dis ; 67(suppl_3): S274-S283, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30496459

RESUMEN

Background: Gatifloxacin is used for the treatment of multidrug-resistant tuberculosis (MDR-TB). The optimal dose is unknown. Methods: We performed a 28-day gatifloxacin hollow-fiber system model of tuberculosis (HFS-TB) study in order to identify the target exposures associated with optimal kill rates and resistance suppression. Monte Carlo experiments (MCE) were used to identify the dose that would achieve the target exposure in 10000 adult patients with meningeal or pulmonary MDR-TB. The optimal doses identified were validated using probit analyses of clinical data from 2 prospective clinical trials of patients with pulmonary and meningeal tuberculosis. Classification and regression-tree (CART) analyses were used to identify the gatifloxacin minimum inhibitory concentration (MIC) below which patients failed or relapsed on combination therapy. Results: The target exposure associated with optimal microbial kill rates and resistance suppression in the HFS-TB was a 0-24 hour area under the concentration-time curve-to-MIC of 184. MCE identified an optimal gatifloxacin dose of 800 mg/day for pulmonary and 1200 mg/day for meningeal MDR-TB, and a clinical susceptibility breakpoint of MIC ≤ 0.5 mg/L. In clinical trials, CART identified that 79% patients failed therapy if MIC was >2 mg/L, but 98% were cured if MIC was ≤0.5 mg/L. Probit analysis of clinical data demonstrated a >90% probability of a cure in patients if treated with 800 mg/day for pulmonary tuberculosis and 1200 mg/day for meningeal tuberculosis. Doses ≤400 mg/day were suboptimal. Conclusions: Gatifloxacin doses of 800 mg/day and 1200 mg/day are recommended for pulmonary and meningeal MDR-TB treatment, respectively. Gatifloxacin has a susceptible dose-dependent zone at MICs 0.5-2 mg/L.


Asunto(s)
Antituberculosos/farmacocinética , Gatifloxacina/farmacocinética , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis Meníngea/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Pulmonar/tratamiento farmacológico , Humanos , Pulmón/microbiología , Pruebas de Sensibilidad Microbiana , Método de Montecarlo , Estudios Prospectivos , Tuberculosis Meníngea/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Pulmonar/microbiología
16.
Clin Infect Dis ; 67(suppl_3): S293-S302, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30496461

RESUMEN

Background: Levofloxacin is used for the treatment of multidrug-resistant tuberculosis; however the optimal dose is unknown. Methods: We used the hollow fiber system model of tuberculosis (HFS-TB) to identify 0-24 hour area under the concentration-time curve (AUC0-24) to minimum inhibitory concentration (MIC) ratios associated with maximal microbial kill and suppression of acquired drug resistance (ADR) of Mycobacterium tuberculosis (Mtb). Levofloxacin-resistant isolates underwent whole-genome sequencing. Ten thousands patient Monte Carlo experiments (MCEs) were used to identify doses best able to achieve the HFS-TB-derived target exposures in cavitary tuberculosis and tuberculous meningitis. Next, we used an ensemble of artificial intelligence (AI) algorithms to identify the most important predictors of sputum conversion, ADR, and death in Tanzanian patients with pulmonary multidrug-resistant tuberculosis treated with a levofloxacin-containing regimen. We also performed probit regression to identify optimal levofloxacin doses in Vietnamese tuberculous meningitis patients. Results: In the HFS-TB, the AUC0-24/MIC associated with maximal Mtb kill was 146, while that associated with suppression of resistance was 360. The most common gyrA mutations in resistant Mtb were Asp94Gly, Asp94Asn, and Asp94Tyr. The minimum dose to achieve target exposures in MCEs was 1500 mg/day. AI algorithms identified an AUC0-24/MIC of 160 as predictive of microbiologic cure, followed by levofloxacin 2-hour peak concentration and body weight. Probit regression identified an optimal dose of 25 mg/kg as associated with >90% favorable response in adults with pulmonary tuberculosis. Conclusions: The levofloxacin dose of 25 mg/kg or 1500 mg/day was adequate for replacement of high-dose moxifloxacin in treatment of multidrug-resistant tuberculosis.


Asunto(s)
Antituberculosos/farmacocinética , Inteligencia Artificial , Levofloxacino/farmacocinética , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Pulmonar/tratamiento farmacológico , Algoritmos , Antituberculosos/administración & dosificación , Farmacorresistencia Bacteriana Múltiple , Quimioterapia Combinada , Humanos , Levofloxacino/administración & dosificación , Pruebas de Sensibilidad Microbiana , Método de Montecarlo , Esputo/microbiología
17.
Clin Infect Dis ; 67(suppl_3): S308-S316, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30496460

RESUMEN

Background: d-cycloserine is used to treat multidrug-resistant tuberculosis. Its efficacy, contribution in combination therapy, and best clinical dose are unclear, also data on the d-cycloserine minimum inhibitory concentration (MIC) distributions is scant. Methods: We performed a systematic search to identify pharmacokinetic and pharmacodynamic studies performed with d-cycloserine. We then performed a combined exposure-effect and dose fractionation study of d-cycloserine in the hollow fiber system model of tuberculosis (HFS-TB). In parallel, we identified d-cycloserine MICs in 415 clinical Mycobacterium tuberculosis (Mtb) isolates from patients. We utilized these results, including intracavitary concentrations, to identify the clinical dose that would be able to achieve or exceed target exposures in 10000 patients using Monte Carlo experiments (MCEs). Results: There were no published d-cycloserine pharmacokinetics/pharmacodynamics studies identified. Therefore, we performed new HFS-TB experiments. Cyloserine killed 6.3 log10 colony-forming units (CFU)/mL extracellular bacilli over 28 days. Efficacy was driven by the percentage of time concentration persisted above MIC (%TMIC), with 1.0 log10 CFU/mL kill achieved by %TMIC = 30% (target exposure). The tentative epidemiological cutoff value with the Sensititre MYCOTB assay was 64 mg/L. In MCEs, 750 mg twice daily achieved target exposure in lung cavities of 92% of patients whereas 500 mg twice daily achieved target exposure in 85% of patients with meningitis. The proposed MCE-derived clinical susceptibility breakpoint at the proposed doses was 64 mg/L. Conclusions: Cycloserine is cidal against Mtb. The susceptibility breakpoint is 64 mg/L. However, the doses likely to achieve the cidality in patients are high, and could be neurotoxic.


Asunto(s)
Antituberculosos/farmacocinética , Cicloserina/farmacocinética , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Antituberculosos/administración & dosificación , Cicloserina/administración & dosificación , Humanos , Pruebas de Sensibilidad Microbiana , Método de Montecarlo , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
18.
Artículo en Inglés | MEDLINE | ID: mdl-29180526

RESUMEN

The modern chemotherapy era started with Fleming's discovery of benzylpenicillin. He demonstrated that benzylpenicillin did not kill Mycobacterium tuberculosis In this study, we found that >64 mg/liter of static benzylpenicillin concentrations killed 1.16 to 1.43 log10 CFU/ml below starting inoculum of extracellular and intracellular M. tuberculosis over 7 days. When we added the ß-lactamase inhibitor avibactam, benzylpenicillin maximal kill (Emax) of extracellular log-phase-growth M. tuberculosis was 6.80 ± 0.45 log10 CFU/ml at a 50% effective concentration (EC50) of 15.11 ± 2.31 mg/liter, while for intracellular M. tuberculosis it was 2.42 ± 0.14 log10 CFU/ml at an EC50 of 6.70 ± 0.56 mg/liter. The median penicillin (plus avibactam) MIC against South African clinical M. tuberculosis strains (80% either multidrug or extensively drug resistant) was 2 mg/liter. We mimicked human-like benzylpenicillin and avibactam concentration-time profiles in the hollow-fiber model of tuberculosis (HFS-TB). The percent time above the MIC was linked to effect, with an optimal exposure of ≥65%. At optimal exposure in the HFS-TB, the bactericidal activity in log-phase-growth M. tuberculosis was 1.44 log10 CFU/ml/day, while 3.28 log10 CFU/ml of intracellular M. tuberculosis was killed over 3 weeks. In an 8-week HFS-TB study of nonreplicating persistent M. tuberculosis, penicillin-avibactam alone and the drug combination of isoniazid, rifampin, and pyrazinamide both killed >7.0 log10 CFU/ml. Monte Carlo simulations of 10,000 preterm infants with disseminated disease identified an optimal dose of 10,000 U/kg (of body weight)/h, while for pregnant women or nonpregnant adults with pulmonary tuberculosis the optimal dose was 25,000 U/kg/h, by continuous intravenous infusion. Penicillin-avibactam should be examined for effect in pregnant women and infants with drug-resistant tuberculosis, to replace injectable ototoxic and teratogenic second-line drugs.


Asunto(s)
Antituberculosos/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Penicilina G/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Adulto , Compuestos de Azabiciclo/uso terapéutico , Línea Celular , Combinación de Medicamentos , Femenino , Humanos , Isoniazida/uso terapéutico , Pruebas de Sensibilidad Microbiana/métodos , Método de Montecarlo , Embarazo , Pirazinamida/uso terapéutico , Rifampin/uso terapéutico
19.
Artículo en Inglés | MEDLINE | ID: mdl-28807911

RESUMEN

In pharmacokinetic/pharmacodynamic models of pulmonary Mycobacterium abscessus complex, the recommended macrolide-containing combination therapy has poor kill rates. However, clinical outcomes are unknown. We searched the literature for studies published between 1990 and 2017 that reported microbial outcomes in patients treated for pulmonary M. abscessus disease. A good outcome was defined as sustained sputum culture conversion (SSCC) without relapse. Random effects models were used to pool studies and estimate proportions of patients with good outcomes. Odds ratios (OR) and 95% confidence intervals (CI) were computed. Sensitivity analyses and metaregression were used to assess the robustness of findings. In 19 studies of 1,533 patients, combination therapy was administered to 508 patients with M. abscessus subsp. abscessus, 204 with M. abscessus subsp. massiliense, and 301 with M. abscessus with no subspecies specified. Macrolide-containing regimens achieved SSCC in only 77/233 (34%) new M. abscessus subsp. abscessus patients versus 117/141 (54%) M. abscessus subsp. massiliense patients (OR, 0.108 [95% CI, 0.066 to 0.181]). In refractory disease, SSCC was achieved in 20% (95% CI, 7 to 36%) of patients, which was not significantly different across subspecies. The estimated recurrent rates per month were 1.835% (range, 1.667 to 3.196%) for M. abscessus subsp. abscessus versus 0.683% (range, 0.229 to 1.136%) for M. abscessus subsp. massiliense (OR, 6.189 [95% CI, 2.896 to 13.650]). The proportion of patients with good outcomes was 52/223 (23%) with M. abscessus subsp. abscessus versus 118/141 (84%) with M. abscessus subsp. massiliense disease (OR, 0.059 [95% CI, 0.034 to 0.101]). M. abscessus subsp. abscessus pulmonary disease outcomes with the currently recommended regimens are atrocious, with outcomes similar to those for extensively drug-resistant tuberculosis. Therapeutically, the concept of nontuberculous mycobacteria is misguided. There is an urgent need to craft entirely new treatment regimens.


Asunto(s)
Antibacterianos/uso terapéutico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Mycobacterium abscessus/patogenicidad , Humanos , Infecciones por Mycobacterium no Tuberculosas/mortalidad , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Bacteriana/mortalidad , Esputo/microbiología , Resultado del Tratamiento
20.
Artículo en Inglés | MEDLINE | ID: mdl-28584143

RESUMEN

Linezolid has an excellent sterilizing effect in tuberculosis patients but high adverse event rates. The dose that would maximize efficacy and minimize toxicity is unknown. We performed linezolid dose-effect and dose-scheduling studies in the hollow fiber system model of tuberculosis (HFS-TB) for sterilizing effect. HFS-TB units were treated with several doses to mimic human-like linezolid intrapulmonary pharmacokinetics and repetitively sampled for drug concentration, total bacterial burden, linezolid-resistant subpopulations, and RNA sequencing over 2 months. Linezolid-resistant isolates underwent whole-genome sequencing. The expression of genes encoding efflux pumps in the first 1 to 2 weeks revealed the same exposure-response patterns as the linezolid-resistant subpopulation. Linezolid-resistant isolates from the 2nd month of therapy revealed mutations in several efflux pump/transporter genes and a LuxR-family transcriptional regulator. Linezolid sterilizing effect was linked to the ratio of unbound 0- to 24-h area under the concentration-time curve (AUC0-24) to MIC. Optimal microbial kill was achieved at an AUC0-24/MIC ratio of 119. The optimal sterilizing effect dose for clinical use was identified using Monte Carlo simulations. Clinical doses of 300 and 600 mg/day (or double the dose every other day) achieved this target in 87% and >99% of 10,000 patients, respectively. The susceptibility breakpoint identified was 2 mg/liter. The simulations identified that a 300-mg/day dose did not achieve AUC0-24s associated with linezolid toxicity, while 600 mg/day achieved those AUC0-24s in <20% of subjects. The linezolid dose of 300 mg/day performed well and should be compared to 600 mg/day or 1,200 mg every other day in clinical trials.


Asunto(s)
Antituberculosos/uso terapéutico , Linezolid/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/uso terapéutico , Tuberculosis Pulmonar/tratamiento farmacológico , Antituberculosos/efectos adversos , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana/genética , Genoma Bacteriano/genética , Humanos , Linezolid/efectos adversos , Proteínas de Transporte de Membrana/genética , Pruebas de Sensibilidad Microbiana , Proteínas Represoras/genética , Transactivadores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA