RESUMEN
Foraging behaviours encompass strategies to locate resources and to exploit them. In many taxa, these behaviours are driven by a major gene called for, but the mechanisms of gene regulation vary between species. In the parasitoid wasp Venturia canescens, sexual and asexual populations coexist in sympatry but differ in life-history traits, physiology and behaviours, which could impact their foraging strategies. Here, we explored the molecular bases underpinning divergence in behaviours by testing two mutually nonexclusive hypotheses: first, the divergence in the for gene correlates with differences in foraging strategies, and second, the latter rely on a divergence in whole-genome expression. Using comparative genomics, we showed that the for gene was conserved across insects considering both sequence and gene model complexity. Polymorphism analysis did not support the occurrence of two allelic variants diverging across the two populations, yet the asexual population exhibited less polymorphism than the sexual population. Sexual and asexual transcriptomes split sharply, with 10.9% differentially expressed genes, but these were not enriched in behaviour-related genes. We showed that the for gene was more highly expressed in asexual female heads than in sexual heads and that those differences correlate with divergence in foraging behaviours in our experiment given that asexuals explored the environment more and exploited more host patches. Overall, these results suggested that fine tuning of for gene expression between populations may have led to distinct foraging behaviours. We hypothesized that reproductive polymorphism and coexistence in sympatry of sexual and asexual populations specialized to different ecological niches via divergent optima on phenotypic traits could imply adaptation through different expression patterns of the for gene and at many other loci throughout the genome.
Asunto(s)
Avispas , Animales , Femenino , Avispas/genética , Reproducción Asexuada/genética , Reproducción/genética , Polimorfismo Genético/genética , FenotipoRESUMEN
The worldwide expansion of artificial light at night (ALAN) is acknowledged as a threat to biodiversity through alterations of the natural photoperiod triggering the disruption of physiological functions. In vertebrates, melatonin production during the dark phase can be decreased or suppressed by nocturnal light as shown in many taxa. But the effect of ALAN at low intensity mimicking light pollution in peri-urban area has never been investigated in amphibians. We filled this gap by studying the impact of low ALAN levels on the expression of genes related to melatonin synthesis and signaling in two anurans (agile frog, Rana dalmatina, and common toad, Bufo bufo). Circadian expression of genes encoding enzymes catalyzing melatonin synthesis (aralkylamine N-acetyltransferase, AANAT and acetylserotonin O-methyltransferase, ASMT) or melatonin receptors (Mel1a, Mel1b and Mel1c) was investigated using RT-qPCR after 23 days of nocturnal exposure to control (< 0.01 lx) or low ALAN (3 lx). We showed that the relative abundance of most transcripts was low in late afternoon and early evening (06 pm and 08 pm) and increased throughout the night in R. dalmatina. However, a clear and ample nocturnal pattern of target gene expression was not detected in control tadpoles of both species. Surprisingly, a low ALAN level had little influence on the relative expression of most melatonin-related genes. Only Mel1c expression in R. dalmatina and Mel1b expression in B. bufo were affected by ALAN. This target gene approach provides experimental evidence that melatonin signaling pathway was slightly affected by low ALAN level in anuran tadpoles.
Asunto(s)
Melatonina , Animales , Melatonina/metabolismo , Ritmo Circadiano/fisiología , Transcriptoma , Larva/metabolismo , Luz , Transducción de Señal , Anuros/genética , Anuros/metabolismoRESUMEN
Sib-mating avoidance is a pervasive behaviour that is expected to evolve in species subject to inbreeding depression. Although laboratory studies provide elegant demonstrations, small-scaled bioassays minimize the costs of mate finding and choice, and thus may produce spurious findings. We therefore combined laboratory experiments with field observations to examine the existence of inbreeding avoidance using the parasitoid wasp Venturia canescens. In the laboratory, our approach consisted of mate-choice experiments to assess kin discrimination in population cages with competitive interactions. A higher mating probability after sib rejections suggested that females could discriminate their sibs; however, in contrast to previous findings, sib-mating avoidance was not observed. To compare our laboratory results to field data, we captured 241 individuals from two populations. Females laid eggs in the lab, and 226 daughters were obtained. All individuals were genotyped at 18 microsatellite loci, which allowed inference of the genotype of each female's mate and subsequently the relatedness within each mating pair. We found that the observed rate of sib-mating did not differ from the probability that sibs encountered one another at random in the field, which is consistent with an absence of sib-mating avoidance. In addition, we detected a weak but significant male-biased dispersal, which could reduce encounters between sibs. We also found weak fitness costs associated with sib-mating. As such, the sex-biased dispersal that we found is probably sufficient to mitigate these costs. These results imply that kin discrimination has probably evolved for purposes other than mate choice, such as superparasitism avoidance.
Asunto(s)
Insectos/genética , Insectos/fisiología , Preferencia en el Apareamiento Animal/fisiología , Conducta Sexual Animal/fisiología , Avispas/genética , Avispas/fisiología , Animales , Evolución Biológica , Femenino , Genotipo , Endogamia/métodos , Incesto , Masculino , Repeticiones de Microsatélite/genética , Reproducción/fisiologíaRESUMEN
Phenotypic plasticity may contribute to the invasive success of an alien species in a new environment. A highly plastic species may survive and reproduce in more diverse environments, thereby supporting establishment and colonization. We focused on plasticity in the circadian rhythm of activity, which can favour species coexistence in invasion, for the invasive species Drosophila suzukii, which is expected to be a weaker direct competitor than other Drosophila species of the resident community. We compared the circadian rhythms of the locomotor activity in adults and the expression of clock genes in response to temperature in the invasive D. suzukii and the resident Drosophila melanogaster. We showed that D. suzukii is active in a narrower range of temperatures than D. melanogaster and that the activities of the two species overlap during the day, regardless of the temperature. Both species are diurnal and exhibit rhythmic activity at dawn and dusk, with a much lower activity at dawn for D. suzukii females. Our results show that the timeless and clock genes are good candidates to explain the plastic response that is observed in relation to temperature. Overall, our results suggest that thermal phenotypic plasticity in D. suzukii activity is not sufficient to explain the invasive success of D. suzukii and call for testing other hypotheses, such as the release of competitors and/or predators.
Asunto(s)
Proteínas CLOCK/genética , Ritmo Circadiano , Proteínas de Drosophila/genética , Drosophila/fisiología , Expresión Génica , Adaptación Fisiológica , Animales , Proteínas CLOCK/metabolismo , Drosophila/genética , Proteínas de Drosophila/metabolismo , Locomoción , TemperaturaRESUMEN
BACKGROUND: Single-locus complementary sex determination (sl-CSD), which occurs in some insects of the order Hymenoptera, imposes a heavy genetic load that can drive small populations to extinction. The core process in these species is the development of individuals homozygous at the sex-determining locus into unfit diploid males. The risk of extinction of populations with sl-CSD is theoretically much higher if diploid males are viable and capable of mating but sterile, because diploid males then decrease the reproductive output of both their parents and the females with which they mate. RESULTS: In the parasitoid wasp Venturia canescens (Hymenoptera: Ichneumonidae), diploid males resembled their haploid counterparts in most respects, but their mating success was nevertheless lower than that of haploid males, especially when the two types of males were placed in competition. Furthermore, although diploid males transferred viable sperm during copulation, they sired no daughters: the females with which they mated produced only sons, like virgin females. A simulation model combining behavior, genetics and demography demonstrated that for two alternative hypotheses concerning the fertilization success of diploid sperm, the mating success of diploid males strongly affected population dynamics. CONCLUSION: The performance of diploid males should be estimated in competitive situations. It is a crucial determinant of the probability of extinction.
Asunto(s)
Aptitud Genética , Infertilidad Masculina , Procesos de Determinación del Sexo/genética , Conducta Sexual Animal , Avispas/fisiología , Animales , Diploidia , Femenino , Haploidia , Masculino , Dinámica Poblacional , Reproducción/genética , Avispas/genéticaRESUMEN
Genotypes that hedge their bets can be favored by selection in an unpredictably varying environment. Bet hedging can be achieved by systematically expressing several phenotypes, such as one that readily attempts to reproduce and one that procrastinates in a dormant stage. But how much of each phenotype should a genotype express? Theory predicts that evolving bet-hedging strategies depend on local environmental variation, on how the population is regulated, and on exchanges with neighboring populations. Empirically, however, it remains unknown whether bet hedging can evolve to cope with the ecological conditions experienced by populations. Here we study the evolution of bet-hedging dormancy frequencies in two neighboring populations of the chestnut weevil, Curculio elephas. We estimate the temporal distribution of demographic parameters together with the form of the relationship between fecundity and population density and use both to parameterize models that predict the bet-hedging dormancy frequency expected to evolve in each population. Strikingly, the observed dormancy frequencies closely match predictions in their respective localities. We also found that dormancy frequencies vary randomly across generations, likely due to environmental perturbations of the underlying physiological mechanism. Using a model that includes these constraints, we predict the whole distribution of dormancy frequencies whose mean and shape agree with our observed data. Overall, our results suggest that dormancy frequencies have evolved according to local ecological conditions and physiological constraints.
Asunto(s)
Evolución Biológica , Ambiente , Fagaceae/parasitología , Larva/fisiología , Fenotipo , Gorgojos/crecimiento & desarrollo , Gorgojos/genética , Animales , Diapausa de Insecto , Francia , Modelos Biológicos , Densidad de PoblaciónRESUMEN
During biological invasion process, species encounter new environments and partially escape some ecological constraints they faced in their native range, while they face new ones. The Asian tiger mosquito Aedes albopictus is one of the most iconic invasive species introduced in every inhabited continent due to international trade. It has also been shown to be infected by a prevalent yet disregarded microbial entomoparasite Ascogregarina taiwanensis. In this study, we aimed at deciphering the factors that shape the global dynamics of A. taiwanensis infection in natural A. albopictus populations. We showed that A. albopictus populations are highly colonized by several parasite genotypes but recently introduced ones are escaping it. We further performed experiments based on the invasion process to explain such pattern. To that end, we hypothesized that (i) mosquito passive dispersal (i.e. human-aided egg transportation) may affect the parasite infectiveness, (ii) founder effects (i.e. population establishment by a small number of mosquitoes) may influence the parasite dynamics, and (iii) unparasitized mosquitoes are more prompt to found new populations through active flight dispersal. The two first hypotheses were supported as we showed that parasite infection decreases over time when dry eggs are stored and that experimental increase in mosquitoes' density improves the parasite horizontal transmission to larvae. Surprisingly, parasitized mosquitoes tend to be more active than their unparasitized relatives. Finally, this study highlights the importance of global trade as a driver of biological invasion of the most invasive arthropod vector species.
RESUMEN
Tolerance of ectotherm species to cold stress is highly plastic according to thermal conditions experienced prior to cold stress. In this study, we investigated how cold tolerance varies with developmental temperature (at 17, 25 and 30°C) and whether developmental temperature induces different metabolic profiles. Experiments were conducted on the two populations of the parasitoid wasp, Venturia canescens, undergoing contrasting thermal regimes in their respective preferential habitat (thermally variable vs. buffered). We predicted the following: i) development at low temperatures improves the cold tolerance of parasitoid wasps, ii) the shape of the cold tolerance reaction norm differs between the two populations, and iii) these phenotypic variations are correlated with their metabolic profiles. Our results showed that habitat origin and developmental acclimation interact to determine cold tolerance and metabolic profiles of the parasitoid wasps. Cold tolerance was promoted when developmental temperatures declined and population originating from variable habitat presented a higher cold tolerance. Cold tolerance increases through the accumulation of metabolites with an assumed cryoprotective function and the depression of metabolites involved in energy metabolism. Our data provide an original example of how intraspecific cold acclimation variations correlate with metabolic response to developmental temperature.
Asunto(s)
Aclimatación , Frío , Metaboloma , Avispas/metabolismo , Aminoácidos/análisis , Aminoácidos/metabolismo , Animales , Metabolismo de los Hidratos de Carbono , Ecosistema , Femenino , Cromatografía de Gases y Espectrometría de Masas , Masculino , Metabolómica/métodos , Polímeros/análisis , Polímeros/metabolismo , Análisis de Componente Principal , Especificidad de la Especie , Factores de Tiempo , Avispas/fisiologíaRESUMEN
The effects of density are key in determining population dynamics, since they can positively or negatively affect the fitness of individuals. These effects have great relevance for polyphagous insects for which immature stages develop within a single site of finite feeding resources. Drosophila suzukii is a crop pest that induces severe economic losses for agricultural production; however, little is known about the effects of density on its life-history traits. In the present study, we (i) investigated the egg distribution resulting from females' egg-laying strategy and (ii) tested the immediate (on immatures) and delayed (on adults) effects of larval density on emergence rate, development time, potential fecundity, and adult size. The density used varied in a range between 1 and 50 larvae. We showed that 44.27% of the blueberries used for the oviposition assay contained between 1 and 11 eggs in aggregates. The high experimental density (50 larvae) has no immediate effect in the emergence rate but has effect on larval developmental time. This trait was involved in a trade-off with adult life-history traits: The time of larval development was reduced as larval density increased, but smaller and less fertile females were produced. Our results clearly highlight the consequences of larval crowding on the juveniles and adults of this fly.
RESUMEN
Nutritional symbioses between insects and intracellular bacteria (endosymbionts) are a major force of adaptation, allowing animals to colonize nutrient-poor ecological niches. Many beetles feeding on tyrosine-poor substrates rely on a surplus of aromatic amino acids produced by bacterial endosymbionts. This surplus of aromatic amino acids is crucial for the biosynthesis of a thick exoskeleton, the cuticle, which is made of a matrix of chitin with proteins and pigments built from tyrosine-derived molecules, providing an important defensive barrier against biotic and abiotic stress. Other endosymbiont-related advantages for beetles include faster development and improved fecundity. The association between Sitophilus oryzae and the Sodalis pierantonius endosymbiont represents a unique case study among beetles: endosymbionts undergo an exponential proliferation in young adults concomitant with the cuticle tanning, and then they are fully eliminated. While endosymbiont clearance, as well as total endosymbiont titer, are host-controlled processes, the mechanism triggering endosymbiont exponential proliferation remains poorly understood. Here, we show that endosymbiont exponential proliferation relies on host carbohydrate intake, unlike the total endosymbiont titer or the endosymbiont clearance, which are under host genetic control. Remarkably, insect fecundity was preserved, and the cuticle tanning was achieved, even when endosymbiont exponential proliferation was experimentally blocked, except in the context of a severely unbalanced diet. Moreover, a high endosymbiont titer coupled with nutrient shortage dramatically impacted host survival, revealing possible environment-dependent disadvantages for the host, likely due to the high energy cost of exponentially proliferating endosymbionts. IMPORTANCE Beetles thriving on tyrosine-poor diet sources often develop mutualistic associations with endosymbionts able to synthesize aromatic amino acids. This surplus of aromatic amino acids is used to reinforce the insect's protective cuticle. An exceptional feature of the Sitophilus oryzae/Sodalis pierantonius interaction is the exponential increase in endosymbiotic titer observed in young adult insects, in concomitance with cuticle biosynthesis. Here, we show that host carbohydrate intake triggers endosymbiont exponential proliferation, even in conditions that lead to the detriment of the host survival. In addition, when hosts thrive on a balanced diet, endosymbiont proliferation is dispensable for several host fitness traits. The endosymbiont exponential proliferation is therefore dependent on the nutritional status of the host, and its consequences on host cuticle biosynthesis and survival depend on food quality and availability.
Asunto(s)
Escarabajos , Gorgojos , Animales , Gorgojos/genética , Gorgojos/microbiología , Enterobacteriaceae/genética , Simbiosis , Insectos , Aminoácidos Aromáticos/metabolismo , Tirosina/metabolismo , Carbohidratos , Proliferación CelularRESUMEN
Environmental variability is expected to be important in shaping performance curves, reaction norms of phenotypic traits related to fitness. Models predict that the breadth of performance curves should increase with environmental variability at the expense of maximal performance. In this study, we compared the thermal performance curves of two sympatric populations of the parasitoid Venturia canescens that were observed under contrasting thermal regimes in their respective preferred habitats and differing in their modes of reproduction. Our results confirm the large effect of developmental temperature on phenotypic traits of insects and demonstrate that thelytokous and arrhenotokous wasps respond differently to temperature during development, in agreement with model predictions. For traits related to fecundity, thelytokous parasitoids, which usually occur in stable thermal conditions, exhibit specialist performance curves, maximising their reproductive success under a restricted range of temperature. In contrast, arrhenotokous parasitoids, which occur in variable climates, exhibit generalist performance curves, in keeping with the hypothesis "jack of all temperatures, master of none".
Asunto(s)
Ecosistema , Himenópteros/fisiología , Temperatura , Animales , Tamaño Corporal/fisiología , Longevidad/fisiología , Oviposición/fisiologíaRESUMEN
The acquisition of nutritional obligate primary endosymbionts (P-symbionts) allowed phloemo-phageous insects to feed on plant sap and thus colonize novel ecological niches. P-symbionts often coexist with facultative secondary endosymbionts (S-symbionts), which may also influence their hosts' niche utilization ability. The whitefly Bemisia tabaci is a highly diversified species complex harboring, in addition to the P-symbiont "Candidatus Portiera aleyrodidarum," seven S-symbionts whose roles remain poorly understood. Here, we compare the phenotypic and metabolic responses of three B. tabaci lines differing in their S-symbiont community, reared on three different host plants, hibiscus, tobacco, or lantana, and address whether and how S-symbionts influence insect capacity to feed and produce offspring on those plants. We first show that hibiscus, tobacco, and lantana differ in their free amino acid composition. Insects' performance, as well as free amino acid profile and symbiotic load, were shown to be plant dependent, suggesting a critical role for the plant nutritional properties. Insect fecundity was significantly lower on lantana, indicating that it is the least favorable plant. Remarkably, insects reared on this plant show a specific amino acid profile and a higher symbiont density compared to the two other plants. In addition, this plant was the only one for which fecundity differences were observed between lines. Using genetically homogeneous hybrids, we demonstrate that cytotype (mitochondria and symbionts), and not genotype, is a major determinant of females' fecundity and amino acid profile on lantana. As cytotypes differ in their S-symbiont community, we propose that these symbionts may mediate their hosts' suitable plant range. IMPORTANCE Microbial symbionts are universal in eukaryotes, and it is now recognized that symbiotic associations represent major evolutionary driving forces. However, the extent to which symbionts contribute to their hosts' ecological adaptation and subsequent diversification is far from being fully elucidated. The whitefly Bemisia tabaci is a sap feeder associated with multiple coinfecting intracellular facultative symbionts. Here, we show that plant species simultaneously affect whiteflies' performance, amino acid profile, and symbiotic density, which could be partially explained by differences in plant nutritional properties. We also demonstrate that, on lantana, the least favorable plant used in our study, whiteflies' performance is determined by their cytotype. We propose that the host plant utilization in B. tabaci is influenced by its facultative symbiont community composition, possibly through its impact on the host dietary requirements. Altogether, our data provide new insights into the impact of intracellular microorganisms on their animal hosts' ecological niche range and diversification.
Asunto(s)
Hemípteros/fisiología , Hibiscus/parasitología , Lantana/parasitología , Nicotiana/parasitología , Aminoácidos/química , Animales , Conducta Alimentaria , Fertilidad , Hemípteros/clasificación , Hibiscus/química , Hibiscus/fisiología , Especificidad del Huésped , Lantana/química , Lantana/fisiología , Mitocondrias/metabolismo , Oviposición , Simbiosis , Nicotiana/química , Nicotiana/fisiologíaRESUMEN
Spotted wing drosophila (SWD) causes significant economic loss in fruit crops to growers worldwide. There is immediate need for efficacious and selective monitoring tools that can detect infestations early. Previously, volatile organic compounds derived from apple were studied and a quinary chemical component blend (QB) was identified as the key SWD attractant in a blueberry orchard in the United States. This study's aim was to determine whether previously observed QB efficacy, selectivity, and early detection levels could be attained within raspberry and cherry fields in the USA and Europe. Results demonstrated that sticky trap baited QB dispenser provided earlier SWD detection potential than the usually adopted apple cider vinegar (ACV) trap. The number of SWD captured/trap by QB baited trapping systems was significantly lower than that of the ACV trap. However, percent SWD/trap of QB baited traps was same within cherry. Lower non-target capture will save farmer/grower's labor and time allocated to traps installation and drosophila species identification. Within the USA, SWD selectivity of QB baited liquid traps was consistently greater than sticky trap in raspberry field, suggesting that the QB dispenser can be an alternative to the standard ACV lure and that trap design could improve selectivity further.
Asunto(s)
Drosophila/fisiología , Control de Insectos/métodos , Feromonas/farmacología , Prunus avium/crecimiento & desarrollo , Rubus/crecimiento & desarrollo , Compuestos Orgánicos Volátiles/farmacología , Animales , Drosophila/efectos de los fármacos , Europa (Continente) , Prunus avium/parasitología , Rubus/parasitología , Estados UnidosRESUMEN
Mosquitoes are considered one of the most important threats worldwide due to their ability to vector pathogens. They are responsible for the transmission of major pathogens such as malaria, dengue, zika, or chikungunya. Due to the lack of treatments or prophylaxis against many of the transmitted pathogens and an increasing prevalence of mosquito resistance to insecticides and drugs available, alternative strategies are now being explored. Some of these involve the use of microorganisms as promising agent to limit the fitness of mosquitoes, attract or repel them, and decrease the replication and transmission of pathogenic agents. In recent years, the importance of microorganisms colonizing the habitat of mosquitoes has particularly been investigated since they appeared to play major roles in their development and diseases transmission. In this issue, we will synthesize researches investigating how microorganisms present within water habitats may influence breeding site selection and oviposition strategies of gravid mosquito females. We will also highlight the impact of such microbes on the fate of females' progeny during their immature stages with a specific focus on egg hatching, development rate, and larvae or pupae survival.
RESUMEN
Visual cues are known to be used by numerous animal taxa to gather information on quality and localisation of resources. Because environmental lighting can interfere with the spectral features of visual cues, the specific characteristics of the colour signals that promote forager decision and learning are still not known in the majority of insects (excepted in bees). We analysed the effect of previous experience on the use of visual information by the wasp Venturia canescens, a parasitoid of pyralidae, in the context of host searching. These parasitoids search for hosts concealed in several fruit species, so visual cues from the host microhabitat could play a key role in host finding. We also investigated the type of visual cues on which wasps based their decision. We tested whether wasps are able to associate an achromatic cue (brightness) or a chromatic one (hue, i.e. dominant wavelength and/or chroma) with the presence of hosts. Our results show that in the context of host foraging, chromatic cues are more reliable than brightness in achieving the associative learning process. Therefore, understanding the behavioural ecology of foraging should make use of the knowledge about the visual information used.
Asunto(s)
Aprendizaje por Asociación/fisiología , Percepción de Color/fisiología , Conducta Alimentaria/fisiología , Percepción Visual/fisiología , Avispas/fisiología , Animales , Señales (Psicología) , Estimulación LuminosaRESUMEN
Sib mating increases homozygosity, which therefore increases the risk of inbreeding depression. Selective pressures have favoured the evolution of kin recognition and avoidance of sib mating in numerous species, including the parasitoid wasp Venturia canescens. We studied the female neurogenomic response associated with sib mating avoidance after females were exposed to courtship displays by i) unrelated males or ii) related males or iii) no courtship (controls). First, by comparing the transcriptional responses of females exposed to courtship displays to those exposed to controls, we saw a rapid and extensive transcriptional shift consistent with social environment. Second, by comparing the transcriptional responses of females exposed to courtship by related to those exposed to unrelated males, we characterized distinct and repeatable transcriptomic patterns that correlated with the relatedness of the courting male. Network analysis revealed 3 modules of specific 'sib-responsive' genes that were distinct from other 'courtship-responsive' modules. Therefore, specific neurogenomic states with characteristic brain transcriptomes associated with different behavioural responses affect sib mating avoidance behaviour.
Asunto(s)
Cortejo , Preferencia en el Apareamiento Animal , Transcriptoma , Avispas/fisiología , Animales , Encéfalo/metabolismo , Femenino , Endogamia , Masculino , ReproducciónRESUMEN
Artificial Light At Night (ALAN) is an emerging pollution, that dramatically keeps on increasing worldwide due to urbanisation and transport infrastructure development. In 2016, it nearly affected 23% of the Earth's surface. To date, all terrestrial and aquatic ecosystems have been affected. The disruption of natural light cycles due to ALAN is particularly expected for nocturnal species, which require dark periods to forage, move, and reproduce. Apart from chiropterans, amphibians contain the largest proportion of nocturnal species among vertebrates exhibiting an unfavourable conservation status in most parts of the world and living in ALAN polluted areas. Despite the growing number of studies on this subject, our knowledge on the direct influence of nocturnal lighting on amphibians is still scarce. To better understand the consequences of ALAN on the breeding component of amphibian fitness, we experimentally exposed male breeding common toads (Bufo bufo) to ecologically relevant light intensities of 0.01 (control), 0.1 or 5 lux for 12 days. At mating, exposed males took longer than controls to form an amplexus, i.e. to pair with a female, and broke amplexus before egg laying, while controls never did. These behavioural changes were associated with fitness alteration. The fertilisation rate of 5 lux-exposed males was reduced by 25%. Salivary testosterone, which is usually correlated with reproductive behaviours, was not altered by ALAN. Our study demonstrates that ALAN can affect the breeding behaviour of anuran species and reduce one component of their fitness. Given the growing importance of ALAN, more work is needed to understand its long-term consequences on the behaviour and physiology of individuals. It appears essential to identify deleterious effects for animal populations and propose appropriate management solutions in an increasingly brighter world.
Asunto(s)
Bufo bufo , Luz , Conducta Sexual Animal , Animales , Bufo bufo/fisiología , Ecosistema , Femenino , Masculino , Fotoperiodo , Conducta Sexual Animal/fisiología , Conducta Sexual Animal/efectos de la radiaciónRESUMEN
Ontogeny of animal personality is still an open question. Testing whether personality traits correlated with state variables (e.g. metabolic rate, hormones) and/or life history traits, and which ones are involved, requires more empirical studies. Insects with metamorphosis represent a good opportunity to tackle this question. Because of the various degrees of internal (physiological, nervous) and environmental changes linked to metamorphosis they allow testing whether these modifications drive consistency in personality traits between immature and adult stages. In this review, we establish general predictions for the effects of metamorphosis on personality in insects with complete or incomplete metamorphosis and suffering from a strong or weak niche shift after metamorphosis. We then reviewed the still rare empirical literature and discuss future research axes.
Asunto(s)
Insectos/fisiología , Metamorfosis Biológica/fisiología , Animales , Ecosistema , Insectos/crecimiento & desarrollo , PersonalidadRESUMEN
The oxidative homeostasis is the balance between reactive oxygen species and antioxidant molecules. In addition to be considered as a key factor underlying life-history traits evolution, the oxidative homeostasis has been shown to be involved in many host-symbiont associations. Previous studies suggest an interaction between the bacterial endosymbiont Wolbachia and the oxidative homeostasis of some insect hosts. This interaction is likely to exert a strong influence on the host evolution, as it has been proposed in the wasp Asobara tabida, whose dependence upon Wolbachia is due to the evolutionary loss of its ability to regulate the oxidative homeostasis in the absence of the symbiont. Although such cases of complete dependence are rare, cases of insects having lost only a part of their autonomy over the control of the oxidative homeostasis might be more common. If so, one can expect that insects having coevolved with Wolbachia will be more sensitive to oxidative stress when cured of their symbionts. We tested this hypothesis by studying the effects of an experimentally-induced oxidative stress on various life-history traits of Asobara japonica, a species closely related to A. tabida. For most of the life-history traits studied, the sensitivity of the wasps to oxidative stress did not correlate with their infection status. The only exception was the parasitic success. However, contrarily to our expectation, the sensitivity to oxidative stress was increased, rather than decreased, when Wolbachia was present. This result suggests that Wolbachia does not participate to mitigate oxidative stress in A. japonica, and that on the contrary its presence might still be costly in stressful environments.
Asunto(s)
Estrés Oxidativo , Avispas/microbiología , Wolbachia/fisiología , Animales , Interacciones Huésped-Patógeno , SimbiosisRESUMEN
Differences in learning and memory dynamics between populations are suspected to result from differences in ecological constraints such as resource distribution. The two reproductive modes (strains) of the parasitoid wasp Venturia canescens share the same geographical areas but live in contrasting habitats: arrhenotokous wasps live in the wild (generally orchards), whereas thelytokous ones live mostly in stored-products buildings (e.g. granaries). This species thus represents a relevant biological model for understanding the relationship between the ecological constraints faced by a species and its memory and learning ability. We showed that after having laid eggs in presence of both a synthetic odour and natural olfactory cues of their host, arrhenotokous wasps exhibited a change in their behavioural response towards the synthetic odour that was at least as pronounced as in thelytokous ones even though they were faster in their decision-making process. This is consistent with better learning skills in arrhenotokous wasps. The corresponding memory trace persisted in both strains for at least 51 h. We compare and discuss the learning and memory ablities of both strains as a function of their costs and benefits in their preferential habitats.