Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 205(12): 3333-3347, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33177159

RESUMEN

No licensed vaccine exists against visceral leishmaniasis (VL), a disease caused by the Leishmania donovani parasite. We have previously reported both macrophages and dendritic cells play important role in the protection induced by a live attenuated centrin gene-deleted L. donovani (LdCen-/- ) parasite vaccine. The role of neutrophils in orchestrating the initial innate response to pathogens is widely recognized. To investigate the early interaction of LdCen-/- with neutrophils, we immunized mice intradermally in the ear pinna with LdCen-/- Compared with LdWT infection, LdCen-/- parasites induced higher recruitment of neutrophils to the ear dermis and ear draining lymph nodes (dLN) as early as 6-18 h after immunization, which were predominantly proinflammatory in nature. Neutrophils from ear dLN of LdCen-/- -immunized mice exhibited heightened expression of costimulatory molecules and attenuated expression of coinhibitory molecules necessary for higher T cell activation. Further phenotypic characterization revealed heterogeneous neutrophil populations containing Nα and Nß subtypes in the ear dLN. Of the two, the parasitized Nα subset from LdCen-/- -immunized mice exhibited much stronger Ag-specific CD4+ T cell proliferation ex vivo. Adoptive transfer of neutrophils bearing LdCen-/- parasites induced an increased Th1 response in naive mice. Importantly, neutrophil depletion significantly abrogated Ag-specific CD4+ T cell proliferation in LdCen-/- -immunized mice and impaired protection against virulent challenge. Conversely, replenishing of neutrophils significantly restored the LdCen-/- -induced host-protective response. These results suggest that neutrophils are indispensable for protective immunity induced by LdCen-/- parasite vaccine.


Asunto(s)
Leishmania donovani/inmunología , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis Visceral/prevención & control , Activación de Linfocitos , Infiltración Neutrófila , Neutrófilos/inmunología , Células TH1/inmunología , Animales , Femenino , Leishmania donovani/genética , Vacunas contra la Leishmaniasis/genética , Leishmaniasis Visceral/genética , Leishmaniasis Visceral/inmunología , Ratones , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología
2.
Nat Immunol ; 10(3): 273-80, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19198591

RESUMEN

CD40, a costimulatory molecule expressed on macrophages, induces expression of interleukin 12 (IL-12) in uninfected macrophages and IL-10 in macrophages infected with Leishmania major. IL-12 suppresses, whereas IL-10 enhances, L. major infection. The mechanisms that regulate this difference in CD40-induced cytokine production remain unclear, but it is known that L. major depletes cholesterol. Here we show that cholesterol influenced the assembly of distinct CD40 signalosomes. Depletion of membrane cholesterol inhibited the assembly of an IL-12-inducing CD40 signalosome containing the adaptors TRAF2, TRAF3 and TRAF5 and the kinase Lyn and promoted the assembly of an IL-10-inducing CD40 signalosome containing the adaptor TRAF6 and the kinase Syk. Thus, cholesterol depletion might represent an immune-evasion strategy used by L. major.


Asunto(s)
Antígenos CD40/inmunología , Colesterol/metabolismo , Leishmania major/inmunología , Macrófagos/inmunología , Animales , Antígenos CD40/metabolismo , Células Cultivadas , Colesterol/inmunología , Leishmania major/metabolismo , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/metabolismo , Macrófagos/parasitología , Ratones , Ratones Endogámicos BALB C , Fosforilación , Transducción de Señal/inmunología , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/inmunología , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo
3.
J Immunol ; 200(1): 163-176, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29187586

RESUMEN

No vaccine exists against visceral leishmaniasis. To develop effective vaccines, we have previously reported protective role of live attenuated centrin gene-deleted Leishmania donovani (LdCen-/- ) parasites through induction of Th1 type immune response in mice, hamsters, and dogs. In this study, we specifically explored the role of Th17 cells in LdCen-/- -induced host protection in mice. Our results showed that compared with wild-type L. donovani infection, LdCen-/- parasites induce significantly higher expression of Th17 differentiation cytokines in splenic dendritic cells. There was also induction of IL-17 and its promoting cytokines in total splenocytes and in both CD4 and CD8 T cells following immunization with LdCen-/- Upon challenge with wild-type parasites, IL-17 and its differentiating cytokines were significantly higher in LdCen-/- -immunized mice compared with nonimmunized mice that resulted in parasite control. Alongside IL-17 induction, we observed induction of IFN-γ-producing Th1 cells as reported earlier. However, Th17 cells are generated before Th1 cells. Neutralization of either IL-17 or IFN-γ abrogated LdCen-/- -induced host protection further confirming the essential role of Th17 along with Th1 cytokines in host protection. Treatment with recombinant IL-23, which is required for stabilization and maintenance of IL-17, heightened Th17, and Tc17 responses in immunized mice splenocytes. In contrast, Th17 response was absent in immunized IL-23R-/- mice that failed to induce protection upon virulent Leishmania challenge suggesting that IL-23 plays an essential role in IL-17-mediated protection by LdCen-/- parasites. This study unveiled the role of IL-23-dependent IL-17 induction in LdCen-/- parasite-induced immunity and subsequent protection against visceral leishmaniasis.


Asunto(s)
Interleucina-17/metabolismo , Interleucina-23/metabolismo , Leishmania donovani/inmunología , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis Visceral/inmunología , Células TH1/inmunología , Células Th17/inmunología , Animales , Animales Modificados Genéticamente , Femenino , Humanos , Leishmania donovani/genética , Vacunas contra la Leishmaniasis/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Protozoarias/genética , Receptores de Interleucina/genética , Células TH1/parasitología , Células Th17/parasitología , Vacunas Atenuadas/inmunología
4.
Proc Natl Acad Sci U S A ; 112(30): E4094-103, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26170307

RESUMEN

The TNF family member, transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI), is a key molecule for plasma cell maintenance and is required in infections where protection depends on antibody response. Here, we report that compared with WT mouse, TACI KO Μϕs expressed lower levels of Toll-like receptors (TLRs), CD14, myeloid differentiation primary response protein 88, and adaptor protein Toll/IL-1 receptor domain-containing adapter-inducing IFN-ß and responded poorly to TLR agonists. Analysis of Μϕ phenotype revealed that, in the absence of TACI, Μϕs adapt the alternatively activated (M2) phenotype. Steady-state expression levels for M2 markers IL-4Rα, CD206, CCL22, IL-10, Arg1, IL1RN, and FIZZ1 were significantly higher in TACI KO Μϕ than in WT cells. Confirming their M2 phenotype, TACI-KO Mϕs were unable to control Leishmania major infection in vitro, and intradermal inoculation of Leishmania resulted in a more severe manifestation of disease than in the resistant C57BL/6 strain. Transfer of WT Μϕs to TACI KO mice was sufficient to significantly reduce disease severity. TACI is likely to influence Mϕ phenotype by mediating B cell-activating factor belonging to the TNF family (BAFF) and a proliferation inducing ligand (APRIL) signals because both these ligands down-regulated M2 markers in WT but not in TACI-deficient Μϕs. Moreover, treatment of Μϕs with BAFF or APRIL enhanced the clearance of Leishmania from cells only when TACI is expressed. These findings may have implications for understanding the shortcomings of host response in newborns where TACI expression is reduced and in combined variable immunodeficiency patients where TACI signaling is ablated.


Asunto(s)
Leishmania/patogenicidad , Leishmaniasis/inmunología , Macrófagos/inmunología , Proteína Activadora Transmembrana y Interactiva del CAML/metabolismo , Animales , Factor Activador de Células B/metabolismo , Proliferación Celular , Regulación de la Expresión Génica , Leishmaniasis/metabolismo , Ligandos , Receptores de Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Fosforilación , Transducción de Señal , Proteína Activadora Transmembrana y Interactiva del CAML/genética , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
5.
J Immunol ; 194(12): 5961-7, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25980013

RESUMEN

Miltefosine [hexadecylphosphocholine (HPC)] is the only orally bioavailable drug for the disease visceral leishmaniasis, which is caused by the protozoan parasite Leishmania donovani. Although miltefosine has direct leishmanicidal effects, evidence is mounting for its immune system-dependent effects. The mechanism of such indirect antileishmanial effects of miltefosine remains to be discovered. As platelet-activating factor and HPC share structural semblances and both induce killing of intracellular Leishmania, we surmised that platelet-activating factor (PAF) receptor had a significant role in the antileishmanial function of miltefosine. The proposition was supported by molecular dynamic simulation of HPC docking into PAF receptor and by comparison of its leishmanicidal function on PAF receptor-deficient macrophages and mice under HPC treatment. We observed that compared with wild-type macrophages, the PAF receptor-deficient macrophages showed 1) reduced binding of a fluorescent analog of HPC, 2) decreased TNF-α production, and 3) lower miltefosine-induced killing of L. donovani. Miltefosine exhibited significantly compromised leishmanicidal function in PAF receptor-deficient mice. An anti-PAF receptor Ab led to a significant decrease in miltefosine-induced intracellular Leishmania killing and IFN-γ production in a macrophage-T cell coculture system. These results indicate significant roles for PAF receptor in the leishmanicidal activity of HPC. The findings open new avenues for a more rational understanding of the mechanism of action of this drug as well as for improved therapeutic strategies.


Asunto(s)
Antiprotozoarios/farmacología , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/metabolismo , Fosforilcolina/análogos & derivados , Glicoproteínas de Membrana Plaquetaria/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Antígenos de Protozoos/inmunología , Antiprotozoarios/administración & dosificación , Antiprotozoarios/química , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Técnicas de Inactivación de Genes , Interferón gamma/biosíntesis , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/genética , Ligandos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Modelos Moleculares , Conformación Molecular , Fosforilcolina/administración & dosificación , Fosforilcolina/química , Fosforilcolina/farmacología , Glicoproteínas de Membrana Plaquetaria/antagonistas & inhibidores , Glicoproteínas de Membrana Plaquetaria/química , Glicoproteínas de Membrana Plaquetaria/deficiencia , Unión Proteica , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/deficiencia
6.
Cell Immunol ; 309: 37-41, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27444130

RESUMEN

The clinical outcome of Leishmania pathogenesis ranges from active skin lesions to fatal visceral dissemination and severely impaired T cell immunity. It is well established that a strong Th1 immune response is protective against cutaneous forms of the disease, however a mixed Th1/Th2 response is most commonly observed against visceral infections as evident from previous studies. Aside from Th1/Th2 cytokines, the pro-inflammatory IL-17 cytokine family plays an important role in the clearance of intracellular pathogens. In Leishmania induced skin lesions, IL-17 produced by Th17 cells is shown to exacerbate the disease, suggesting a role in pathogenesis. However, a protective role for IL-17 is indicated by the expansion of IL-17 producing cells in vaccine-induced immunity. In human visceral leishmaniasis (VL) it has been demonstrated that IL-17 and IL-22 are associated with protection against re-exposure to Leishmania, which further suggests the involvement of IL-17 in vaccine induced protective immunity. Although there is no vaccine against any form of leishmaniasis, the development of genetically modified live attenuated parasites as vaccine candidates prove to be promising, as they successfully induce a robust protective immune response in various animal models. However, the role of IL-17 producing cells and Th17 cells in response to these vaccine candidates remains unexplored. In this article, we review the role of IL-17 in Leishmania pathogenesis and the potential impact on vaccine induced immunity, with a special focus on live attenuated Leishmania parasites.


Asunto(s)
Interleucina-17/metabolismo , Leishmania/inmunología , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis/inmunología , Células Th17/inmunología , Animales , Humanos , Inmunidad Celular , Balance Th1 - Th2 , Vacunas Atenuadas
7.
J Immunol ; 193(7): 3513-27, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25156362

RESUMEN

Previously, we showed that genetically modified live-attenuated Leishmania donovani parasite cell lines (LdCen(-/-) and Ldp27(-/-)) induce a strong cellular immunity and provide protection against visceral leishmaniasis in mice. In this study, we explored the mechanism of cross-protection against cutaneous lesion-causing Leishmania mexicana. Upon challenge with wild-type L. mexicana, mice immunized either for short or long periods showed significant protection. Immunohistochemical analysis of ears from immunized/challenged mice exhibited significant influx of macrophages, as well as cells expressing MHC class II and inducible NO synthase, suggesting an induction of potent host-protective proinflammatory responses. In contrast, substantial inhibition of IL-10, IL-4, and IL-13 expression and the absence of degranulated mast cells and less influx of eosinophils within the ears of immunized/challenged mice suggested a controlled anti-inflammatory response. L. mexicana Ag-stimulated lymph node cell culture from the immunized/challenged mice revealed induction of IFN-γ secretion by the CD4 and CD8 T cells compared with non-immunized/challenged mice. We also observed suppression of Th2 cytokines in the culture supernatants of immunized/challenged lymph nodes compared with non-immunized/challenged mice. Adoptively transferred total T cells from immunized mice conferred strong protection in recipient mice against L. mexicana infection, suggesting that attenuated L. donovani can provide protection against heterologous L. mexicana parasites by induction of a strong T cell response. Furthermore, bone marrow-derived dendritic cells infected with LdCen(-/-) and Ldp27(-/-) parasites were capable of inducing a strong proinflammatory response leading to the proliferation of Th1 cells. These studies demonstrate the potential of live-attenuated L. donovani parasites as pan-Leishmania species vaccines.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Inmunidad Celular/efectos de los fármacos , Leishmania donovani/inmunología , Leishmania mexicana/inmunología , Vacunas contra la Leishmaniasis/farmacología , Leishmaniasis Cutánea/prevención & control , Animales , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/patología , Reacciones Cruzadas/efectos de los fármacos , Citocinas/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Inmunidad Celular/genética , Leishmania donovani/genética , Vacunas contra la Leishmaniasis/genética , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis Cutánea/genética , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/patología , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Vacunas Atenuadas/farmacología
8.
Infect Immun ; 83(10): 3800-15, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26169275

RESUMEN

Visceral leishmaniasis (VL) causes significant mortality and there is no effective vaccine. Previously, we have shown that genetically modified Leishmania donovani parasites, here described as live attenuated parasites, induce a host protective adaptive immune response in various animal models. In this study, we demonstrate an innate immune response upon infection with live attenuated parasites in macrophages from BALB/c mice both in vitro and in vivo. In vitro infection of macrophages with live attenuated parasites (compared to that with wild-type [WT] L. donovani parasites) induced significantly higher production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-12 [IL-12], gamma interferon [IFN-γ], and IL-6), chemokines (monocyte chemoattractant protein 1/CCL-2, macrophage inflammatory protein 1α/CCL-3, and IP-10), reactive oxygen species (ROS), and nitric oxide, while concomitantly reducing anti-inflammatory cytokine IL-10 and arginase-1 activities, suggesting a dominant classically activated/M1 macrophage response. The classically activated response in turn helps in presenting antigen to T cells, as observed with robust CD4(+) T cell activation in vitro. Similarly, parasitized splenic macrophages from live attenuated parasite-infected mice also demonstrated induction of an M1 macrophage phenotype, indicated by upregulation of IL-1ß, TNF-α, IL-12, and inducible nitric oxide synthase 2 and downregulation of genes associated with the M2 phenotype, i.e., the IL-10, YM1, Arg-1, and MRC-1 genes, compared to WT L. donovani-infected mice. Furthermore, an ex vivo antigen presentation assay showed macrophages from live attenuated parasite-infected mice induced higher IFN-γ and IL-2 but significantly less IL-10 production by ovalbumin-specific CD4(+) T cells, resulting in proliferation of Th1 cells. These data suggest that infection with live attenuated parasites promotes a state of classical activation (M1 dominant) in macrophages that leads to the generation of protective Th1 responses in BALB/c mice.


Asunto(s)
Inmunidad Innata , Leishmania donovani/genética , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Macrófagos/inmunología , Células TH1/inmunología , Inmunidad Adaptativa , Animales , Quimiocina CCL2/genética , Quimiocina CCL2/inmunología , Quimiocina CCL3/genética , Quimiocina CCL3/inmunología , Femenino , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-12/genética , Interleucina-12/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Leishmaniasis Visceral/genética , Leishmaniasis Visceral/parasitología , Ratones , Ratones Endogámicos BALB C
9.
J Immunol ; 190(5): 2138-49, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23338240

RESUMEN

Leishmaniasis causes significant morbidity and mortality worldwide, and no vaccines against this disease are available. Previously, we had shown that the amastigote-specific protein p27 (Ldp27) is a component of an active cytochrome c oxidase complex in Leishmania donovani and that upon deletion of its gene the parasite had reduced virulence in vivo. In this study, we have shown that Ldp27(-/-) parasites do not survive beyond 20 wk in BALB/c mice and hence are safe as an immunogen. Upon virulent challenge, mice 12 wk postimmunization showed significantly lower parasite burden in the liver and spleen. When mice were challenged 20 wk postimmunization, a significant reduction in parasite burden was still noted, suggesting long-term protection by Ldp27(-/-) immunization. Immunization with Ldp27(-/-) induced both pro- and anti-inflammatory cytokine responses and activated splenocytes for enhanced leishmanicidal activity in association with NO production. Protection in both short- and long-term immunized mice after challenge with the wild-type parasite correlated with the stimulation of multifunctional Th1-type CD4 and CD8 T cells. Adoptive transfer of T cells from long-term immunized mice conferred protection against virulent challenge in naive recipient mice, suggesting involvement of memory T cell response in protection against Leishmania infection. Immunization of mice with Ldp27(-/-)also demonstrated cross-protection against Leishmania major and Leishmania braziliensis infection. Our data show that genetically modified live attenuated Ldp27(-/-) parasites are safe, induce protective immunity even in the absence of parasites, and can provide protection against homologous and heterologous Leishmania species.


Asunto(s)
Antígenos de Protozoos/genética , Complejo IV de Transporte de Electrones/genética , Eliminación de Gen , Leishmania donovani/inmunología , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis Visceral/prevención & control , Proteínas Protozoarias/genética , Traslado Adoptivo , Animales , Antígenos de Protozoos/inmunología , Protección Cruzada , Complejo IV de Transporte de Electrones/inmunología , Femenino , Inmunización , Memoria Inmunológica , Vacunas contra la Leishmaniasis/administración & dosificación , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/parasitología , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/inmunología , Bazo/efectos de los fármacos , Bazo/inmunología , Bazo/parasitología , Linfocitos T/inmunología , Linfocitos T/trasplante , Tiempo , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología
10.
J Infect Dis ; 207(8): 1328-38, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23288926

RESUMEN

BACKGROUND: Visceral leishmaniasis (VL) is transmitted by sand flies. Protection of needle-challenged vaccinated mice was abrogated in vector-initiated cutaneous leishmaniasis, highlighting the importance of developing natural transmission models for VL. METHODS: We used Lutzomyia longipalpis to transmit Leishmania infantum or Leishmania donovani to hamsters. Vector-initiated infections were monitored and compared with intracardiac infections. Body weights were recorded weekly. Organ parasite loads and parasite pick-up by flies were assessed in sick hamsters. RESULTS: Vector-transmitted L. infantum and L. donovani caused ≥5-fold increase in spleen weight compared with uninfected organs and had geometric mean parasite loads (GMPL) comparable to intracardiac inoculation of 10(7)-10(8) parasites, although vector-initiated disease progression was slower and weight loss was greater. Only vector-initiated L. infantum infections caused cutaneous lesions at transmission and distal sites. Importantly, 45.6%, 50.0%, and 33.3% of sand flies feeding on ear, mouth, and testicular lesions, respectively, were parasite-positive. Successful transmission was associated with a high mean percent of metacyclics (66%-82%) rather than total GMPL (2.0 × 10(4)-8.0 × 10(4)) per midgut. CONCLUSIONS: This model provides an improved platform to study initial immune events at the bite site, parasite tropism, and pathogenesis and to test drugs and vaccines against naturally acquired VL.


Asunto(s)
Modelos Animales de Enfermedad , Mordeduras y Picaduras de Insectos/parasitología , Insectos Vectores/parasitología , Leishmaniasis Visceral/patología , Psychodidae/parasitología , Animales , Peso Corporal , Cricetinae , Progresión de la Enfermedad , Leishmania donovani/patogenicidad , Leishmania infantum/patogenicidad , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/patología , Leishmaniasis Cutánea/transmisión , Leishmaniasis Visceral/parasitología , Leishmaniasis Visceral/transmisión , Masculino , Tamaño de los Órganos , Carga de Parásitos , Bazo/parasitología , Bazo/patología
11.
Microbes Infect ; : 105340, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663721

RESUMEN

Our developed cell division-specific 'centrin' gene deleted Leishmania donovani (LdCen1-/-) the causative parasite of the fatal visceral-leishmaniasis (VL), exhibits a selective growth arrest at the intracellular stage and is anticipated as a live attenuated vaccine candidate against VL. LdCen1-/- immunization in animals has shown increased IFN-γ secreting CD4+ and CD8+ T cells along with protection conferred by a protective proinflammatory immune response. A label-free proteomics approach has been employed to understand the physiology of infection and predict disease interceptors during Leishmania-host interactions. Proteomic modulation after infection of human macrophage cell lines suggested elevated annexin A6, implying involvement in various biological processes such as membrane repair, transport, actin dynamics, cell proliferation, survival, differentiation, and inflammation, thereby potentiating its immunological protective capacity. Additionally, S100A8 and S100A9 proteins, known for maintaining homeostatic balance in regulating the inflammatory response, have been upregulated after infection. The inhibitory clade of serpins, known to inhibit cysteine proteases (CPs), was upregulated in host cells after 48 h of infection. This is reflected in the diminished expression of CPs in the parasites during infection. Such proteome analysis confirms LdCen1-/- efficacy as a vaccine candidate and predicts potential markers in future vaccine development strategies against infectious diseases.

12.
Sci Rep ; 14(1): 14636, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918456

RESUMEN

Centrin1 gene deleted Leishmania donovani parasite (LdCen1-/-) was developed and extensively tested experimentally as an intracellular stage-specific attenuated and immunoprotective live parasite vaccine candidate ex vivo using human PBMCs and in vivo in animals. Here we report manufacturing and pre-clinical evaluation of current Good-Laboratory Practice (cGLP) grade LdCen1-/- parasites, as a prerequisite before proceeding with clinical trials. We screened three batches of LdCen1-/- parasites manufactured in bioreactors under cGLP conditions, for their consistency in genetic stability, attenuation, and safety. One such batch was preclinically tested using human PBMCs and animals (hamsters and dogs) for its safety and protective immunogenicity. The immunogenicity of the CGLP grade LdCen1-/- parasites was similar to one grown under laboratory conditions. The cGLP grade LdCen1-/- parasites were found to be safe and non-toxic in hamsters and dogs even at 3 times the anticipated vaccine dose. When PBMCs from healed visceral leishmaniasis (VL) cases were infected with cGLP LdCen1-/-, there was a significant increase in the stimulation of cytokines that contribute to protective responses against VL. This effect, measured by multiplex ELISA, was greater than that observed in PBMCs from healthy individuals. These results suggest that cGLP grade LdCen1-/- manufactured under cGMP complaint conditions can be suitable for future clinical trials.


Asunto(s)
Eliminación de Gen , Leishmania donovani , Leishmaniasis Visceral , Vacunas Atenuadas , Leishmania donovani/inmunología , Leishmania donovani/genética , Animales , Humanos , Perros , Vacunas Atenuadas/inmunología , Leishmaniasis Visceral/prevención & control , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Cricetinae , Vacunas contra la Leishmaniasis/inmunología , Vacunas contra la Leishmaniasis/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Leucocitos Mononucleares/inmunología , Femenino
13.
J Infect Dis ; 205(10): 1607-16, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22517914

RESUMEN

The initial macrophage-Leishmania donovani interaction results in the formation of membrane platforms, termed lipid rafts, that help in the entry of the parasite. Therefore, it is imperative that the parasite designs a strategy to modulate its uptake and survival within the macrophages. Herein, we report Leishmania-triggered biphasic ceramide generation. In the first phase, L. donovani promastigotes induce activation of acid sphingomyelinase (ASMase), which catalyzes the formation of ceramide from sphingomyelin. Inhibition of ASMase resulted in reduced uptake and infection with the parasite. In the second phase, de novo synthesis generates ceramide that reduces the cellular cholesterol level and displaces the cholesterol from the membrane, leading to enhanced membrane fluidity, disruption of rafts, and impaired antigen-presentation to the T cells. The results reveal a novel role for ceramide in the perspective of L. donovani infection and help formulate an antileishmanial strategy that can possibly be applied to other intracellular infections as well.


Asunto(s)
Ceramidas/metabolismo , Leishmania donovani/fisiología , Leishmaniasis Visceral/metabolismo , Macrófagos/metabolismo , Microdominios de Membrana/fisiología , Animales , Presentación de Antígeno/inmunología , Línea Celular , Colesterol/metabolismo , Interacciones Huésped-Parásitos , Leishmania donovani/inmunología , Leishmaniasis Visceral/parasitología , Macrófagos/enzimología , Macrófagos/parasitología , Fluidez de la Membrana , Ratones , Ratones Endogámicos BALB C , Transducción de Señal , Esfingolípidos/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielinas/metabolismo
14.
Parasitol Int ; 92: 102661, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36049661

RESUMEN

Currently, no licensed vaccine is available for human visceral leishmaniasis (VL), a fatal disease caused by the protozoan parasite Leishmania donovani. Two of our live attenuated L. donovani vaccine candidates, either deleted for Centrin1 (LdCen1-/-) or p27 gene (Ldp27-/-), that display reduced growth in macrophages were studied to be safe, immunogenic and protective against VL in various animal models. This report involves the identification of differentially expressed proteins, their related pathways and its underlying mechanism in the intracellular stage of these parasites, using Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) methods. Out of 50-60 proteins, found to be differentially expressed in these mutant parasites, 36 were found to be common in both the parasites. Such proteins mainly belong to the functional categories viz. metabolic enzymes, chaperones and stress proteins, proteins involved in translation, processing and transport and proteins involved in nucleic acid processing. Proteins known to be host protective, like Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cytochrome c, calreticulin and those responsible for inducing immune response, namely tubulins, DEAD box RNA helicases, HSP70 and tryparedoxin, have been detected to be modulated in these parasites. Such proteins could be predicted as biomarkers, with further scope of study for their role in growth attenuation. SIGNIFICANCE: This study aims at predicting proteomic biomarkers of Leishmania parasite growth attenuation, that have immunomodulatory role in the disease leishmaniasis. Advanced studies could be helpful in establishing the role of these identified proteins in parasitic virulence and to predict the host interaction at molecular level. Also, these proteins could be exploited as attenuation markers during the development of genetically modified live attenuated parasites as vaccine candidates. These could be cross validated in varied species of Leishmania and other tyrpanosomatids for similar response towards identifying them as universal biomarkers of attenuation.


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Animales , Humanos , Leishmaniasis Visceral/prevención & control , Combinación Trimetoprim y Sulfametoxazol , Proteómica , Biomarcadores , Leishmania donovani/genética , Vacunas Atenuadas
15.
Nat Commun ; 14(1): 7028, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919280

RESUMEN

The leishmanin skin test was used for almost a century to detect exposure and immunity to Leishmania, the causative agent of leishmaniasis, a major neglected tropical disease. Due to a lack of antigen used for the intradermal injection, the leishmanin skin test is no longer available. As leishmaniasis control programs are advancing and new vaccines are entering clinical trials, it is essential to re-introduce the leishmanin skin test. Here we establish a Leishmania donovani strain and describe the production, under Good Laboratory Practice conditions, of leishmanin soluble antigen used to induce the leishmanin skin test in animal models of infection and vaccination. Using a mouse model of cutaneous leishmaniasis and a hamster model of visceral leishmaniasis, soluble antigen induces a leishmanin skin test response following infection and vaccination with live attenuated Leishmania major (LmCen-/-). Both the CD4+ and CD8+ T-cells are necessary for the leishmanin skin test response. This study demonstrates the feasibility of large-scale production of leishmanin antigen addressing a major bottleneck for performing the leishmanin skin test in future surveillance and vaccine clinical trials.


Asunto(s)
Leishmania donovani , Leishmaniasis Cutánea , Animales , Linfocitos T CD8-positivos , Antígenos de Protozoos , Leishmaniasis Cutánea/prevención & control , Pruebas Cutáneas
16.
Pathogens ; 11(4)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35456106

RESUMEN

Leishmaniasis, caused by an infection of the Leishmania protozoa, is a neglected tropical disease and a major health problem in tropical and subtropical regions of the world, with approximately 350 million people worldwide at risk and 2 million new cases occurring annually. Current treatments for leishmaniasis are not highly efficacious and are associated with high costs, especially in low- and middle-income endemic countries, and high toxicity. Due to a surge in the incidence of leishmaniases worldwide, the development of new strategies such as a prophylactic vaccine has become a high priority. However, the ability of Leishmania to undermine immune recognition has limited our efforts to design safe and efficacious vaccines against leishmaniasis. Numerous antileishmanial vaccine preparations based on DNA, subunit, and heat-killed parasites with or without adjuvants have been tried in several animal models but very few have progressed beyond the experimental stage. However, it is known that people who recover from Leishmania infection can be protected lifelong against future infection, suggesting that a successful vaccine requires a controlled infection to develop immunologic memory and subsequent long-term immunity. Live attenuated Leishmania parasites that are non-pathogenic and provide a complete range of antigens similarly to their wild-type counterparts could evoke such memory and, thus, would be effective vaccine candidates. Our laboratory has developed several live attenuated Leishmania vaccines by targeted centrin gene disruptions either by homologous recombination or, more recently, by using genome editing technologies involving CRISPR-Cas9. In this review, we focused on the sequential history of centrin gene-deleted Leishmania vaccine development, along with the characterization of its safety and efficacy. Further, we discussed other major considerations regarding the transition of dermotropic live attenuated centrin gene-deleted parasites from the laboratory to human clinical trials.

17.
Front Immunol ; 13: 864031, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35419001

RESUMEN

Leishmaniasis is a vector-borne parasitic disease transmitted through the bite of a sand fly with no available vaccine for humans. Recently, we have developed a live attenuated Leishmania major centrin gene-deleted parasite strain (LmCen-/- ) that induced protection against homologous and heterologous challenges. We demonstrated that the protection is mediated by IFN (Interferon) γ-secreting CD4+ T-effector cells and multifunctional T cells, which is analogous to leishmanization. In addition, in a leishmanization model, skin tissue-resident memory T (TRM) cells were also shown to be crucial for host protection. In this study, we evaluated the generation and function of skin TRM cells following immunization with LmCen-/- parasites and compared those with leishmanization. We show that immunization with LmCen-/- generated skin CD4+ TRM cells and is supported by the induction of cytokines and chemokines essential for their production and survival similar to leishmanization. Following challenge with wild-type L. major, TRM cells specific to L. major were rapidly recruited and proliferated at the site of infection in the immunized mice. Furthermore, upon challenge, CD4+ TRM cells induce higher levels of IFNγ and Granzyme B in the immunized and leishmanized mice than in non-immunized mice. Taken together, our studies demonstrate that the genetically modified live attenuated LmCen-/- vaccine generates functional CD4+ skin TRM cells, similar to leishmanization, that may play a crucial role in host protection along with effector T cells as shown in our previous study.


Asunto(s)
Leishmania major , Vacunas contra la Leishmaniasis , Parásitos , Animales , Inmunidad , Interferón gamma , Vacunas contra la Leishmaniasis/genética , Células T de Memoria , Ratones , Piel , Combinación Trimetoprim y Sulfametoxazol
18.
PLoS Negl Trop Dis ; 16(2): e0010224, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35192633

RESUMEN

BACKGROUND: Neutrophils are involved in the initial host responses to pathogens. Neutrophils can activate T cell responses either independently or through indirect involvement of Dendritic cells (DCs). Recently we have demonstrated direct neutrophil-T cell interactions that initiate adaptive immune responses following immunization with live attenuated Leishmania donovani centrin deleted parasite vaccine (LdCen-/-). However, neutrophil-DC interactions in T cell priming in vaccine immunity in general are not known. In this study we evaluated the interaction between neutrophils and DCs during LdCen-/- infection and compared with wild type parasite (LdWT) both in vitro and in vivo. METHODOLOGY/FINDINGS: LdCen-/- parasite induced increased expression of CCL3 in neutrophils caused higher recruitment of DCs capable of inducing a strong proinflammatory response and elevated co-stimulatory molecule expression compared to LdWT infection. To further illustrate neutrophil-DCs interactions in vivo, we infected LYS-eGFP mice with red fluorescent LdWT/LdCen-/- parasites and sort selected DCs that engulfed the neutrophil containing parasites or DCs that acquired the parasites directly in the ear draining lymph nodes (dLN) 5d post infection. The DCs predominantly acquired the parasites by phagocytosing infected neutrophils. Specifically, DCs containing LdCen-/- parasitized neutrophils exhibited a proinflammatory phenotype, increased expression of costimulatory molecules and initiated higher CD4+T cell priming ex-vivo. Notably, potent DC activation occurred when LdCen-/- parasites were acquired indirectly via engulfment of parasitized neutrophils compared to direct engulfment of LdCen-/- parasites by DCs. Neutrophil depletion in LdCen-/- infected mice significantly abrogated expression of CCL3 resulting in decreased DC recruitment in ear dLN. This event led to poor CD4+Th1 cell priming ex vivo that correlated with attenuated Tbet expression in ear dLN derived CD4+ T cells in vivo. CONCLUSIONS: Collectively, LdCen-/- containing neutrophils phagocytized by DC markedly influence the phenotype and antigen presenting capacity of DCs early on and thus play an immune-regulatory role in shaping vaccine induced host protective response.


Asunto(s)
Leishmania donovani , Vacunas contra la Leishmaniasis , Leishmaniasis Visceral , Animales , Comunicación Celular , Células Dendríticas , Leishmania donovani/fisiología , Leishmaniasis Visceral/parasitología , Ratones , Neutrófilos , Vacunas Atenuadas
19.
NPJ Vaccines ; 7(1): 157, 2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463228

RESUMEN

Leishmaniasis is one of the top neglected tropical diseases with significant morbidity and mortality in low and middle-income countries (LMIC). However, this disease is also spreading in the developed world. Currently, there is a lack of effective strategies to control this disease. Vaccination can be an effective measure to control leishmaniasis and has the potential to achieve disease elimination. Recently, we have generated centrin gene-deleted new world L. mexicana (LmexCen-/-) parasites using CRISPR/Cas9 and showed that they protect mice against a homologous L. mexicana infection that causes cutaneous disease. In this study, we tested whether LmexCen-/- parasites can also protect against visceral leishmaniasis caused by L. donovani in a hamster model. We showed that immunization with LmexCen-/- parasites is safe and does not cause lesions. Furthermore, such immunization conferred protection against visceral leishmaniasis caused by a needle-initiated L. donovani challenge, as indicated by a significant reduction in the parasite burdens in the spleen and liver as well as reduced mortality. Similar control of parasite burden was also observed against a sand fly mediated L. donovani challenge. Importantly, immunization with LmexCen-/- down-regulated the disease promoting cytokines IL-10 and IL-4 and increased pro-inflammatory cytokine IFN-γ resulting in higher IFN-γ/IL-10 and IFN-γ/IL4 ratios compared to non-immunized animals. LmexCen-/- immunization also resulted in long-lasting protection against L. donovani infection. Taken together, our study demonstrates that immunization with LmexCen-/- parasites is safe and efficacious against the Old World visceral leishmaniasis.

20.
NPJ Vaccines ; 7(1): 32, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236861

RESUMEN

Leishmaniasis is a neglected protozoan disease affecting over 12 million people globally with no approved vaccines for human use. New World cutaneous leishmaniasis (CL) caused by L. mexicana is characterized by the development of chronic non-healing skin lesions. Using the CRISPR/Cas9 technique, we have generated live attenuated centrin knockout L. mexicana (LmexCen-/-) parasites. Centrin is a cytoskeletal protein important for cellular division in eukaryotes and, in Leishmania, is required only for intracellular amastigote replication. We have investigated the safety and immunogenicity characteristics of LmexCen-/- parasites by evaluating their survival and the cytokine production in bone-marrow-derived macrophages (BMDMs) and dendritic cells (BMDCs) in vitro. Our data shows that LmexCen-/- amastigotes present a growth defect, which results in significantly lower parasitic burdens and increased protective cytokine production in infected BMDMs and BMDCs, compared to the wild type (WT) parasites. We have also determined the safety and efficacy of LmexCen-/- in vivo using experimental murine models of L. mexicana. We demonstrate that LmexCen-/- parasites are safe and do not cause lesions in susceptible mouse models. Immunization with LmexCen-/- is also efficacious against challenge with WT L. mexicana parasites in genetically different BALB/c and C57BL/6 mouse models. Vaccinated mice did not develop cutaneous lesions, displayed protective immunity, and showed significantly lower parasitic burdens at the infection site and draining lymph nodes compared to the control group. Overall, we demonstrate that LmexCen-/- parasites are safe and efficacious against New World cutaneous leishmaniasis in pre-clinical models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA