Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biometeorol ; 66(12): 2433-2448, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36241912

RESUMEN

Calibrating land surface phenology (LSP) with tree rings is important to model spatio-temporal variations in forest productivity. We used MODIS (resolution: 250 m) NDVI, WDRVI and EVI series 2000-2014 to derive LSP metrics quantifying phenophase timing and canopy photosynthetic rates of 26 European beech forests covering a large thermal gradient (5-16 °C) in Italy. Average phenophase timing changed greatly with site temperature (e.g. growing season 70 days longer at low- than high-elevation); average VI values were affected by precipitation. An annual temperature about 12 °C (c. 1100 m asl) represented a bioclimatic threshold dividing warm from cold beech forests, distinguished by different phenology-BAI (basal area increment) relationships and LSP trends. Cold forests showed decreasing VI values (browning) and delayed phenophases and had negative BAI slopes. Warmer forests tended to increase VI (greening), and positive BAI slopes. NDVI peak, commonly used in global trend assessments, changed with elevation in agreement with changes in wood production. A cross-validation modelling approach demonstrated the ability of LSP to predict average BAI and its interannual variability. Merging sites into bioclimatic groups improved models by amplifying the signal in growth or LSP. NDVI had highest performances when informing on BAI trends; WDRVI and EVI were mostly selected for modelling mean and interannual BAI. WDRVI association with tree rings, tested in this study for the first time, showed that this VI is highly promising for studying forest dynamics. MODIS LSP can quantify forest functioning changes across landscapes and model interannual spatial variations and trends in productivity dynamics under climate change.


Asunto(s)
Fagus , Benchmarking , Bosques , Cambio Climático , Estaciones del Año , Italia
2.
Sci Total Environ ; 775: 145860, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-33631566

RESUMEN

Climate change is increasing the frequency of extreme climate events, causing profound impacts on forest function and composition. Late frost defoliation (LFD) events, the loss of photosynthetic tissues due to low temperatures at the start of the growing season, might become more recurrent under future climate scenarios. Therefore, the detection of changes in late-frost risk in response to global change emerges as a high-priority research topic. Here, we used a tree-ring network from southern European beech (Fagus sylvatica L.) forests comprising Spain, Italy and the Austrian Alps, to assess the incidence of LFD events in the last seven decades. We fitted linear-mixed models of basal area increment using different LFD indicators considering warm spring temperatures and late-spring frosts as fixed factors. We reconstructed major LFD events since 1950, matching extreme values of LFD climatic indicators with sharp tree-ring growth reductions. The last LFD events were validated using remote sensing. Lastly, reconstructed LFD events were climatically and spatially characterized. Warm temperatures before the late-spring frost, defined by high values of growing-degree days, influenced beech growth negatively, particularly in the southernmost populations. The number of LFD events increased towards beech southern distribution edge. Spanish and the southernmost Italian beech forests experienced higher frequency of LFD events since the 1990s. Until then, LFD events were circumscribed to local scales, but since that decade, LFD events became widespread, largely affecting the whole beech southwestern distribution area. Our study, based on in-situ evidence, sheds light on the climatic factors driving LFD occurrence and illustrates how increased occurrence and spatial extension of late-spring frosts might constrain future southern European beech forests' growth and functionality. Observed alterations in the climate-phenology interactions in response to climate change represent a potential threat for temperate deciduous forests persistence in their drier/southern distribution edge.


Asunto(s)
Fagus , Austria , Cambio Climático , Bosques , Italia , España , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA