Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arch Virol ; 165(10): 2147-2163, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32653984

RESUMEN

Small ruminants (e.g., sheep and goats) contribute considerably to the cash income and nutrition of small farmers in most countries in Africa and Asia. Their husbandry is threatened by the highly infectious transboundary viral disease peste des petits ruminants (PPR) caused by peste-des-petits-ruminants virus (PPRV). Given its social and economic impact, PPR is presently being targeted by international organizations for global eradication by 2030. Since its first description in Côte d'Ivoire in 1942, and particularly over the last 10 years, a large amount of molecular epidemiological data on the virus have been generated in Africa. This review aims to consolidate these data in order to have a clearer picture of the current PPR situation in Africa, which will, in turn, assist authorities in global eradication attempts.


Asunto(s)
Brotes de Enfermedades , Enfermedades de las Cabras/epidemiología , Proteínas de la Nucleocápside/genética , Peste de los Pequeños Rumiantes/epidemiología , Virus de la Peste de los Pequeños Rumiantes/genética , Enfermedades de las Ovejas/epidemiología , África/epidemiología , Animales , Enfermedades de las Cabras/transmisión , Enfermedades de las Cabras/virología , Cabras/virología , Epidemiología Molecular , Peste de los Pequeños Rumiantes/transmisión , Peste de los Pequeños Rumiantes/virología , Virus de la Peste de los Pequeños Rumiantes/clasificación , Virus de la Peste de los Pequeños Rumiantes/aislamiento & purificación , Filogenia , Ovinos/virología , Enfermedades de las Ovejas/transmisión , Enfermedades de las Ovejas/virología
2.
Emerg Infect Dis ; 24(8): 1576-1578, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30016239
3.
Virol J ; 15(1): 59, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29609650

RESUMEN

BACKGROUND: Sheeppox (SPP) and goatpox (GTP) caused by sheeppox virus (SPPV) and goatpox virus (GTPV), respectively of the genus Capripoxvirus in the family Poxviridae, are severely afflicting small ruminants' production systems in Africa and Asia. In endemic areas, SPP and GTP are controlled using vaccination with live attenuated vaccines derived from SPPV, GTPV or Lumpy skin disease virus (LSDV). Sometimes outbreaks occur following vaccination. In order to successfully control the spread of the virus, it is essential to identify whether the animals were infected by the field strain and the vaccine did not provide sufficient protection. Alternatively, in some cases the vaccine strain may cause adverse reactions in vaccinated animals or in rare occasions, re-gain virulence. Thus, diagnostic tools for differentiation of virulent strains from attenuated vaccine strains of the virus are needed. The aim of this study was to identify an appropriate diagnostic target region in the capripoxvirus genome by comparing the genomic sequences of SPPV field isolates with those of the most widely used SPP vaccine strains. RESULTS: A unique 84 base pair nucleotide deletion located between the DNA ligase gene and the VARV B22R homologue gene was found only in SPPV vaccines derived from the Romanian and Yugoslavian RM/65 strains and absent in SPPV field isolates originated from various geographical locations of Asia and Africa. In addition, we developed and evaluated a conventional PCR assay, exploiting the targeted intergenic region to differentiate SPPV vaccine virus from field isolates. The assay produced an amplicon size of 218 bp for the vaccine strains, while the SPPV field isolates resulted in a 302 bp PCR fragment. The assay showed good sensitivity and specificity, and the results were in full agreement with the sequencing data of the PCR amplicons. CONCLUSION: The developed assay is an improvement of currently existing diagnostic tools and, when combined with a capripox virus species-specific assay, will enhance SPP and GTP diagnosis and surveillance and facilitate epidemiological investigations in countries using live attenuated SPP vaccines. In addition, for laboratories with limited resources, the assay provides a simple and cost-effective alternative for sequencing.


Asunto(s)
Capripoxvirus/inmunología , Enfermedades de las Cabras/prevención & control , Infecciones por Poxviridae/veterinaria , Enfermedades de las Ovejas/prevención & control , Vacunas Virales/inmunología , Animales , Capripoxvirus/clasificación , Capripoxvirus/genética , Línea Celular , Cabras , Reacción en Cadena de la Polimerasa , Ovinos , Especificidad de la Especie
4.
Arch Virol ; 163(7): 1745-1756, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29520689

RESUMEN

Peste des petits ruminants (PPR) is a contagious and economically important disease affecting production of small ruminants (i.e., sheep and goats). Taking into consideration the lessons learnt from the Global Rinderpest Eradication Programme (GREP), PPR is now targeted by the international veterinary community as the next animal disease to be eradicated. To support the African continental programme for the control of PPR, the Pan African Veterinary Vaccine Centre of the African Union (AU-PANVAC) is developing diagnostics tools. Here, we describe the development of a blocking enzyme-linked immunosorbent assay (bELISA) that allows testing of a large number of samples for specific detection of antibodies directed against PPR virus in sheep and goat sera. The PPR bELISA uses an anti-haemagglutinin (H) monoclonal antibody (MAb) as a competitor antibody, and tests results are interpreted using the percentage of inhibition (PI) of MAb binding generated by the serum sample. PI values below or equal to 18% (PI ≤ 18%) are negative, PI values greater than or equal to 25% (PI ≥ 25%) are positive, and PI values greater than 18% and below 25% are doubtful. The diagnostic specificity (DSp) and diagnostic sensitivity (DSe) were found to be 100% and 93.74%, respectively. The H-based PPR-bELISA showed good correlation with the virus neutralization test (VNT), the gold standard test, with a kappa value of 0.947. The H-based PPR-bELISA is more specific than the commercial kit ID Screen® PPR Competition (N-based PPR-cELISA) from IDvet (France), but the commercial kit is slightly more sensitive than the H-based PPR-bELISA. The validation process also indicated good repeatability and reproducibility of the H-based PPR-bELISA, making this new test a suitable tool for the surveillance and sero-monitoring of the vaccination campaign.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/sangre , Ensayo de Inmunoadsorción Enzimática/métodos , Epítopos/inmunología , Hemaglutininas Virales/inmunología , Peste de los Pequeños Rumiantes/diagnóstico , Virus de la Peste de los Pequeños Rumiantes/inmunología , Animales , Enfermedades de las Cabras/diagnóstico , Enfermedades de las Cabras/inmunología , Enfermedades de las Cabras/virología , Cabras/virología , Pruebas de Neutralización , Peste de los Pequeños Rumiantes/inmunología , Peste de los Pequeños Rumiantes/virología , Virus de la Peste de los Pequeños Rumiantes/aislamiento & purificación , Juego de Reactivos para Diagnóstico , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Ovinos/virología , Enfermedades de las Ovejas/diagnóstico , Enfermedades de las Ovejas/inmunología , Enfermedades de las Ovejas/virología
5.
Virol J ; 13: 34, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26923232

RESUMEN

BACKGROUND: Orf is a contagious disease of sheep, goats and wild ungulates caused by orf virus (ORFV) a member of the genus Parapoxvirus, Poxviridae family. Although orf is endemic in Ethiopia, little attention has been given so far as it is not a notifiable disease by the World Organization for Animal Health. In this work, we have investigated orf outbreaks representing five different geographical locations of Ethiopia, in Amba Giorgis, Gondar zuria, Adet, Debre zeit and Adami Tulu, between 2008 and 2013. RESULTS: The viral isolation and the sequence analysis of the A32L and the B2L genes of eighteen representative isolates confirmed that sampled animals were infected by ORFVs. The phylogenetic study and the comparative analysis of the deduced amino acid profile suggests that there were two main clusters of ORFV isolates which were responsible for the investigated outbreaks. Additionally the analysis of these two genes showed limited variability to ORFVs encountered elsewhere. This is the first report on the genetic characterization of the ORFV isolates from sheep and goats in Ethiopia. CONCLUSION: The molecular characterization of Ethiopian ORFV isolates highlighted the circulation of two main clusters causing orf disease in sheep and goats. The use of laboratory based methods and a constant monitoring of Ethiopian ORFV isolates is needed to better understand the dynamic of ORFV circulating in the country and facilitate the implementation of control measures.


Asunto(s)
Ectima Contagioso/epidemiología , Ectima Contagioso/virología , Virus del Orf/clasificación , Virus del Orf/genética , Secuencia de Aminoácidos , Animales , ADN Viral , Brotes de Enfermedades , Ectima Contagioso/historia , Etiopía/epidemiología , Geografía Médica , Cabras , Historia del Siglo XXI , Datos de Secuencia Molecular , Fenotipo , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Ovinos , Proteínas Virales/química , Proteínas Virales/genética
6.
Trop Anim Health Prod ; 47(3): 603-6, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25547805

RESUMEN

Peste des petits ruminants (PPR), a viral disease of sheep and goats, is endemic in Nigeria. There are reports indicating the involvement of peste des petits ruminants virus (PPRV), the causative agent of PPR, in a camel respiratory syndrome in Africa. Considering that camels share the same grazing land and drinking points with other ruminants, this study was undertaken to determine the seroprevalence and extent of PPRV antibodies in Nigerian camels. A total of 1517 camel sera samples were collected from four states (Borno, Kano, Kastina and Sokoto). The seroprevalence was determined by the H-protein-based competitive ELISA. The overall prevalence was 3.36% (51/1517, 95% confidence interval of 2.51-4.39%). There was no significant differences in prevalence between states (p = 0.8921) and between male and female camels (p = 0.7424). The prevalence differed significantly (p < 0.00001) by body condition score; camels with poor body condition score has higher (16.67%) antibody seroprevalence to PPR compared to those with fair and good body condition score. There was a statistically significant difference between camels aged ≤ 5 years and those >5 years (p = 0.0042). These results show occasional transient PPRV infection of camels in Nigeria, and there is the need to include camels among species to be studied in elucidating the epidemiology of the disease in sheep and goats.


Asunto(s)
Camelus , Peste de los Pequeños Rumiantes/epidemiología , Virus de la Peste de los Pequeños Rumiantes/aislamiento & purificación , Animales , Ensayo de Inmunoadsorción Enzimática/veterinaria , Femenino , Masculino , Nigeria/epidemiología , Peste de los Pequeños Rumiantes/sangre , Peste de los Pequeños Rumiantes/prevención & control , Virus de la Peste de los Pequeños Rumiantes/inmunología , Estudios Seroepidemiológicos
7.
PLoS One ; 18(1): e0280479, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36662803

RESUMEN

BACKGROUND: Timely linkage to care and ART initiation is critical to decrease the risks of HIV-related morbidity, mortality and HIV transmission, but is often challenging. We report on the implementation and effectiveness of a linkage-to-care intervention in rural KwaZulu-Natal, South Africa. METHODS: In the ANRS 12249 TasP trial on Universal Testing and Treatment (UTT) implemented between 2012-2016, resident individuals ≥16 years were offered home-based HIV testing every six months. Those ascertained to be HIV-positive were referred to trial clinics. Starting May 2013, a linkage-to-care intervention was implemented in both trial arms, consisting of tracking through phone calls and/or home visits to "re-refer" people who had not linked to care to trial clinics within three months of the first home-based referral. Fidelity in implementing the planned intervention was described using Kaplan-Meier estimation to compute conditional probabilities of being tracked and of being re-referred by the linkage-to-care team. Effect of the intervention on time to linkage-to-care was analysed using a Cox regression model censored for death, migration, and end of data follow-up. RESULTS: Among the 2,837 individuals (73.7% female) included in the analysis, 904 (32%) were tracked at least once, and 573 of them (63.4%) were re-referred. Probabilities of being re-referred was 17% within six months of first referral and 31% within twelve months. Compared to individuals not re-referred by the intervention, linkage-to-care was significantly higher among those with at least one re-referral through phone call (adjusted hazard ratio [aHR] = 1.82; 95% confidence interval [95% CI] = 1.47-2.25), and among those with re-referral through both phone call and home visit (aHR = 3.94; 95% CI = 2.07-7.48). CONCLUSIONS: Phone calls and home visits following HIV testing were challenging to implement, but appeared effective in improving linkage-to-care amongst those receiving the intervention. Such patient-centred strategies should be part of UTT programs to achieve the UNAIDS 95-95-95 targets.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Femenino , Humanos , Masculino , Fármacos Anti-VIH/uso terapéutico , Infecciones por VIH/diagnóstico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Prueba de VIH , Derivación y Consulta , Población Rural , Sudáfrica/epidemiología
8.
Viruses ; 15(12)2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-38140559

RESUMEN

Sheeppox, goatpox, and lumpy skin disease caused by the sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV), respectively, are diseases that affect millions of ruminants and many low-income households in endemic countries, leading to great economic losses for the ruminant industry. The three viruses are members of the Capripoxvirus genus of the Poxviridae family. Live attenuated vaccines remain the only efficient means for controlling capripox diseases. However, serological tools have not been available to differentiate infected from vaccinated animals (DIVA), though crucial for proper disease surveillance, control, and eradication efforts. We analysed the sequences of variola virus B22R homologue gene for SPPV, GTPV, and LSDV and observed significant differences between field and vaccine strains in all three capripoxvirus species, resulting in the truncation and absence of the B22R protein in major vaccines within each of the viral species. We selected and expressed a protein fragment present in wildtype viruses but absent in selected vaccine strains of all three species, taking advantage of these alterations in the B22R gene. An indirect ELISA (iELISA) developed using this protein fragment was evaluated on well-characterized sera from vaccinated, naturally and experimentally infected, and negative cattle and sheep. The developed wildtype-specific capripox DIVA iELISA showed >99% sensitivity and specificity for serum collected from animals infected with the wildtype virus. To the best of our knowledge, this is the first wildtype-specific, DIVA-capable iELISA for poxvirus diseases exploiting changes in nucleotide sequence alterations in vaccine strains.


Asunto(s)
Capripoxvirus , Virus de la Dermatosis Nodular Contagiosa , Infecciones por Poxviridae , Enfermedades de las Ovejas , Vacunas Virales , Ovinos , Bovinos , Animales , Capripoxvirus/genética , Mutación , Genoma Viral , Virus de la Dermatosis Nodular Contagiosa/genética , Infecciones por Poxviridae/diagnóstico , Infecciones por Poxviridae/prevención & control , Infecciones por Poxviridae/veterinaria , Vacunas Virales/genética , Enfermedades de las Ovejas/epidemiología , Cabras
9.
Trop Med Infect Dis ; 7(9)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36136648

RESUMEN

The COVID-19 pandemic has significantly disrupted TB services, particularly in low resource settings. In Burkina Faso, a cross-sectional 'before and after' study was conducted to assess the impact of COVID-19 on access to TB services. Data was collected in two phases (Phase 1: December 2017−March 2018, and 2: October−December 2020) to estimate and compare various patient and system delays among TB patients before and during COVID-19 and explore changes in treatment seeking behaviors and practices. 331 TB patients were recruited across the two phases. A significant increase in median time between first symptom and contact with TB service (45 days vs. 26 days; p < 0.01) and decrease in median time between first contact and diagnosis, and treatment initiation, respectively, during COVID-19 compared to before. Fewer patients reported using public health centers and more patients reporting using private facilities as the point of first contact following TB symptom onset during the COVID-19 period compared to before. These findings suggest that COVID-19 has created barriers to TB service access and health seeking among symptomatic individuals, yet also led to some efficiencies in TB diagnostic and treatment services. Our findings can be help target efforts along specific points of the TB patient pathway to minimize the overall disruption of COVID-19 and future public health emergencies on TB control in Burkina Faso.

10.
Front Immunol ; 13: 852091, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634275

RESUMEN

The protozoan parasite Trypanosoma evansi is responsible for causing surra in a variety of mammalian hosts and is spread by many vectors over a wide geographical area making it an ideal target for irradiation as a tool to study the initial events that occur during infection. Parasites irradiated at the representative doses 100Gy, 140Gy, and 200Gy were used to inoculate BALB/c mice revealing that parasites irradiated at 200Gy were unable to establish disease in all mice. Cytokine analysis of mice inoculated with 200Gy of irradiated parasites showed significantly lower levels of interleukins when compared to mice inoculated with non-irradiated and 100Gy irradiated parasites. Irradiation also differentially affected the abundance of gene transcripts in a dose-dependent trend measured at 6- and 20-hours post-irradiation with 234, 325, and 484 gene transcripts affected 6 hours post-irradiation for 100Gy-, 140Gy- and 200Gy-irradiated parasites, respectively. At 20 hours post-irradiation, 422, 381, and 457 gene transcripts were affected by irradiation at 100Gy, 140Gy, and 200Gy, respectively. A gene ontology (GO) term analysis was carried out for the three representative doses at 6 hours and 20 hours post-irradiation revealing different processes occurring at 20 hours when compared to 6 hours for 100Gy irradiation. The top ten most significant processes had a negative Z score. These processes fall in significance at 140Gy and even further at 200Gy, revealing that they were least likely to occur at 200Gy, and thus may have been responsible for infection in mice by 100Gy and 140Gy irradiated parasites. When looking at 100Gy irradiated parasites 20 hours post-irradiation processes with a positive Z score, we identified genes that were involved in multiple processes and compared their fold change values at 6 hours and 20 hours. We present these genes as possibly necessary for repair from irradiation damage at 6 hours and suggestive of being involved in the establishment of disease in mice at 20 hours post-irradiation. A potential strategy using this information to develop a whole parasite vaccine is also postulated.


Asunto(s)
Parásitos , Trypanosoma , Animales , Rayos gamma/efectos adversos , Mamíferos , Ratones , Ratones Endogámicos BALB C , Trypanosoma/genética
11.
J Infect Dev Ctries ; 16(2): 374-382, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35298435

RESUMEN

INTRODUCTION: In recent years Peste des petits ruminants (PPR) disease caused several epidemics in a wide range of susceptible hosts. The ability of the peste des petits ruminants virus (PPRV) to cross the species barrier necessitates further research, particularly on disease circulation and cross-species transmission between typical and atypical hosts to guide and facilitate the eradication program anticipated by the Food and Agriculture Organization (FAO) and the World Organization for Animal Health (OIE) in 2030. The aim of this study is to explore the role of dromedary camels as transmitters for PPR. METHODOLOGY: Four experiments were carried out on clinically healthy seronegative camels, sheep and goats. In experiment I, the animals were inoculated with a PPR- positive suspension of camel pneumonic lung homogenate. In the other three experiments either sheep and goats were inoculated and after three days were housed with camels or vice versa. RESULTS: Marked clinical signs suggestive of PPR were seen in sheep and goats while camels showed mild infection. Severe clinical signs of PPR were seen in sheep and goats when kept with inoculated camels. Postmortem examination revealed PPR lesions in all inoculated animals including camels. CONCLUSIONS: This study showed that dromedary camels infected with PPRV can transmit the disease to sheep and goats, even when they developed mild clinical signs.


Asunto(s)
Peste de los Pequeños Rumiantes , Virus de la Peste de los Pequeños Rumiantes , Animales , Camelus , Cabras , Peste de los Pequeños Rumiantes/epidemiología , Peste de los Pequeños Rumiantes/patología , Rumiantes , Ovinos
12.
Microorganisms ; 10(10)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36296232

RESUMEN

Sheeppox (SPP), goatpox (GTP), and lumpy skin disease (LSD) are economically significant pox diseases of ruminants, caused by sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV), respectively. SPPV and GTPV can infect both sheep and goats, while LSDV mainly affects cattle. The recent emergence of LSD in Asia and Europe and the repeated incursions of SPP in Greece, Bulgaria, and Russia highlight how these diseases can spread outside their endemic regions, stressing the urgent need to develop high-throughput serological surveillance tools. We expressed and tested two recombinant truncated proteins, the capripoxvirus homologs of the vaccinia virus C-type lectin-like protein A34 and the EEV glycoprotein A36, as antigens for an indirect ELISA (iELISA) to detect anti-capripoxvirus antibodies. Since A34 outperformed A36 by showing no cross-reactivity to anti-parapoxvirus antibodies, we optimized an A34 iELISA using two different working conditions, one for LSD in cattle and one for SPP/GTP in sheep and goats. Both displayed sound sensitivities and specificities: 98.81% and 98.72%, respectively, for the LSD iELISA, and 97.68% and 95.35%, respectively, for the SPP/GTP iELISA, and did not cross-react with anti-parapoxvirus antibodies of cattle, sheep, and goats. These assays could facilitate the implementation of capripox control programs through serosurveillance and the screening of animals for trade.

13.
Emerg Infect Dis ; 17(7): 1223-31, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21762576

RESUMEN

Interest in peste des petits ruminants virus (PPRV) has been stimulated by recent changes in its host and geographic distribution. For this study, biological specimens were collected from camels, sheep, and goats clinically suspected of having PPRV infection in Sudan during 2000-2009 and from sheep soon after the first reported outbreaks in Morocco in 2008. Reverse transcription PCR analysis confirmed the wide distribution of PPRV throughout Sudan and spread of the virus in Morocco. Molecular typing of 32 samples positive for PPRV provided strong evidence of the introduction and broad spread of Asian lineage IV. This lineage was defined further by 2 subclusters; one consisted of camel and goat isolates and some of the sheep isolates, while the other contained only sheep isolates, a finding with suggests a genetic bias according to the host. This study provides evidence of the recent spread of PPRV lineage IV in Africa.


Asunto(s)
Enfermedades de las Cabras/virología , Peste de los Pequeños Rumiantes/veterinaria , Virus de la Peste de los Pequeños Rumiantes , Enfermedades de las Ovejas/virología , Animales , Antígenos Virales/análisis , Camelus , Análisis por Conglomerados , Brotes de Enfermedades , Ensayo de Inmunoadsorción Enzimática , Enfermedades de las Cabras/epidemiología , Enfermedades de las Cabras/genética , Cabras , Estudios Longitudinales , Tipificación Molecular , Marruecos , Peste de los Pequeños Rumiantes/epidemiología , Peste de los Pequeños Rumiantes/virología , Virus de la Peste de los Pequeños Rumiantes/genética , Virus de la Peste de los Pequeños Rumiantes/aislamiento & purificación , Virus de la Peste de los Pequeños Rumiantes/patogenicidad , Filogenia , Filogeografía , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ovinos , Enfermedades de las Ovejas/epidemiología , Enfermedades de las Ovejas/genética , Sudán
15.
Viruses ; 13(12)2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34960642

RESUMEN

Peste des petits ruminants (PPR) is an acute, contagious viral disease of small ruminants, goats and sheep. The Democratic Republic of the Congo (DRC) was a PPR-free country until 2007, although in 2006, scare alerts were received from the east and the southwest of the country, reporting repeated mortalities, specifically in goats. In 2008, PPR outbreaks were seen in several villages in the west, leading to structured veterinary field operations. Blood, swabs and pathological specimens consisting of tissues from lungs, spleens, lymph nodes, kidneys, livers and hearts were ethically collected from clinically infected and/or dead animals, as appropriate, in 35 districts. Epidemiological information relating to major risk factors and socio-economic impact was progressively collected, revealing the deaths of 744,527 goats, which converted to a trade value of USD 35,674,600. Samples from infected and dead animals were routinely analyzed by the Central Veterinary Laboratory at Kinshasa for diagnosis, and after official declaration of PPR outbreaks by the FAO in July 2012, selected tissue samples were sent to The Pirbright Institute, United Kingdom, for genotyping. As a result of surveys undertaken between 2008 and 2012, PPR virus (PPRV)-specific antibodies were detected in 25 locations out of 33 tested (75.7%); PPRV nucleic acid was detected in 25 locations out of 35 (71.4%); and a typical clinical picture of PPR was observed in 23 locations out of 35 (65.7%). Analysis of the partial and full genome sequences of PPR viruses (PPRVs) obtained from lymphoid tissues of dead goats collected in Tshela in the DRC in 2012 confirmed the circulation of lineage IV PPRV, showing the highest homology (99.6-100%) with the viruses circulating in the neighboring countries of Gabon, in the Aboumi outbreak in 2011, and Nigeria (99.3% homology) in 2013, although recent outbreaks in 2016 and 2018 in the western part of the DRC that borders with East Africa demonstrated circulation of lineage II and lineage III PPRV.


Asunto(s)
Brotes de Enfermedades/veterinaria , Genoma Viral/genética , Enfermedades de las Cabras/epidemiología , Peste de los Pequeños Rumiantes/epidemiología , Virus de la Peste de los Pequeños Rumiantes/aislamiento & purificación , Enfermedades de las Ovejas/epidemiología , Animales , República Democrática del Congo/epidemiología , Enfermedades de las Cabras/virología , Cabras , Peste de los Pequeños Rumiantes/virología , Virus de la Peste de los Pequeños Rumiantes/genética , Filogenia , Estudios Retrospectivos , Rumiantes , Ovinos , Enfermedades de las Ovejas/virología
16.
Front Immunol ; 12: 666543, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211465

RESUMEN

Sheeppox (SPP) is a highly contagious disease of small ruminants caused by sheeppox virus (SPPV) and predominantly occurs in Asia and Africa with significant economic losses. SPPV is genetically and immunologically closely related to goatpox virus (GTPV) and lumpy skin disease virus (LSDV), which infect goats and cattle respectively. SPPV live attenuated vaccines (LAVs) are used for vaccination against SPP and goatpox (GTP). Mechanisms related to innate immunity elicited by SPPV are unknown. Although adaptive immunity is responsible for long-term immunity, it is the innate responses that prevent viral invasion and replication before LAVs generate specific long-term protection. We analyzed the relative expression of thirteen selected genes that included pattern recognition receptors (PRRs), Nuclear factor-κß p65 (NF-κß), and cytokines to understand better the interaction between SPPV and its host. The transcripts of targeted genes in sheep PBMC incubated with either wild type (WT) or LAV SPPV were analyzed using quantitative PCR. Among PRRs, we observed a significantly higher expression of RIG-1 in PBMC incubated with both WT and LAV, with the former producing the highest expression level. However, there was high inter-individual variability in cytokine transcripts levels among different donors, with the expression of TNFα, IL-15, and IL-10 all significantly higher in both PBMC infected with either WT or LAV compared to control PBMC. Correlation studies revealed a strong significant correlation between RIG-1 and IL-10, between TLR4, TNFα, and NF-κß, between IL-18 and IL-15, and between NF-κß and IL-10. There was also a significant negative correlation between RIG-1 and IFNγ, between TLR3 and IL-1 ß, and between TLR4 and IL-15 (P< 0.05). This study identified RIG-1 as an important PRR in the signaling pathway of innate immune activation during SPPV infection, possibly through intermediate viral dsRNA. The role of immunomodulatory molecules produced by SPPV capable of inhibiting downstream signaling activation following RIG-1 upregulation is discussed. These findings advance our knowledge of the induction of immune responses by SPPV and will help develop safer and more potent vaccines against SPP and GTP.


Asunto(s)
Capripoxvirus/inmunología , Inmunidad Innata , Infecciones por Poxviridae/veterinaria , Enfermedades de las Ovejas/prevención & control , Vacunas Virales/inmunología , Animales , Capripoxvirus/genética , Capripoxvirus/aislamiento & purificación , Leucocitos Mononucleares/inmunología , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Superficie Celular , Ovinos , Vacunas Atenuadas/inmunología
17.
Microorganisms ; 9(4)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923417

RESUMEN

Goatpox virus (GTPV) belongs to the genus Capripoxvirus, together with sheeppox virus (SPPV) and lumpy skin disease virus (LSDV). GTPV primarily affects sheep, goats and some wild ruminants. Although GTPV is only present in Africa and Asia, the recent spread of LSDV in Europe and Asia shows capripoxviruses could escape their traditional geographical regions to cause severe outbreaks in new areas. Therefore, it is crucial to develop effective source tracing of capripoxvirus infections. Earlier, conventional phylogenetic methods, based on limited samples, identified three different nucleotide sequence profiles in the G-protein-coupled chemokine receptor (GPCR) gene of GTPVs. However, this method did not differentiate GTPV strains by their geographical origins. We have sequenced the GPCR gene of additional GTPVs and analyzed them with publicly available sequences, using conventional alignment-based methods and an alignment-free approach exploiting k-mer frequencies. Using the alignment-free method, we can now classify GTPVs based on their geographical origin: African GTPVs and Asian GTPVs, which further split into Western and Central Asian (WCA) GTPVs and Eastern and Southern Asian (ESA) GTPVs. This approach will help determine the source of introduction in GTPV emergence in disease-free regions and detect the importation of additional strains in disease-endemic areas.

18.
Microorganisms ; 9(6)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073392

RESUMEN

Lumpy skin disease (LSD), an economically significant disease in cattle caused by lumpy skin disease virus (LSDV), is endemic to nearly all of Africa. Since 2012, LSDV has emerged as a significant epizootic pathogen given its rapid spread into new geographical locations outside Africa, including the Middle East, Eastern Europe, and Asia. To assess the genetic diversity of LSDVs in East Africa, we sequenced and analyzed the RPO30 and GPCR genes of LSDV in twenty-two archive samples collected in Ethiopia, Kenya, and Sudan before the appearance of LSD in the Middle East and its incursion into Europe. We compared them to publicly available sequences of LSDVs from the same region and those collected elsewhere. The results showed that the East African field isolates in this study were remarkably similar to each other and to previously sequenced field isolates of LSDV for the RPO30 and GPCR genes. The only exception was LSDV Embu/B338/2011, a field virus collected in Kenya, which displayed mixed features between the LSDV Neethling vaccine and field isolates. LSDV Embu/B338/2011 had the same 12-nucleotide insertion found in LSDV Neethling and KS-1 vaccines. Further analysis of the partial EEV glycoprotein, B22R, RNA helicase, virion core protein, NTPase, and N1R/p28-like protein genes showed that LSDV Embu/B338/2011 differs from previously described LSDV variants carrying the 12-nucleotide insertion in the GPCR gene. These findings highlight the importance of the constant monitoring of genetic variation among LSDV isolates.

19.
Transbound Emerg Dis ; 68(5): 2842-2852, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34323385

RESUMEN

African swine fever (ASF) has been endemic in sub-Saharan Africa since the 1960s. Following its introduction in Senegal, in 1957, ASF steadily progressed through West Africa, reaching Burkina Faso in 2003, and later Mali in 2016. Despite the heavy burden of disease on pig production, little information is available on the genetic diversity of Africa swine fever virus (ASFV) in Burkina Faso, Mali and Senegal. Here, we used real-time PCR ASFV to detect the ASFV genome in samples collected between 1989 and 2016, in Burkina Faso, Mali and Senegal, and conventional approaches for isolate characterization. The C-terminal end of the p72 protein gene, the full E183L gene and the central variable region (CVR) within the B602L gene in ASFV genome were sequenced and compared to publicly available sequences. ASFV genome was found in 27 samples, 19 from Burkina Faso, three from Mali and five from Senegal. The phylogenetic analyses showed that all viruses belong to genotype I, with the ASFVs from Burkina Faso and Mali grouping with genotype Ia and ASFV serogroup 4, and those from Senegal with genotype Ib and the ASFV serogroup 1. The analysis of the CVR tetrameric tandem repeat sequences (TRS) showed four TRS variants in Burkina Faso, two in Senegal and one in Mali. The three countries did not share any common TRS, and all CVRs of this study differed from previously reported CVRs in West Africa, except for Senegal. Three of the five isolates from Senegal fully matched with the CVR, p72 and p54 sequences from ASFV IC96 collected during the 1996 ASF outbreak in Ivory Coast. This study shows the spread of the same ASFV strains across countries, highlighting the importance of continuous monitoring of ASFV isolates. It also calls for an urgent need to establish a regional plan for the control and eradication of ASF in West Africa.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Fiebre Porcina Africana/epidemiología , Virus de la Fiebre Porcina Africana/genética , Animales , Burkina Faso/epidemiología , Variación Genética , Genotipo , Malí/epidemiología , Filogenia , Senegal/epidemiología , Análisis de Secuencia de ADN/veterinaria , Porcinos
20.
Plant Cell Environ ; 33(6): 959-80, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20102540

RESUMEN

Photosynthetic leaf traits were determined for savanna and forest ecosystems in West Africa, spanning a large range in precipitation. Standardized major axis fits revealed important differences between our data and reported global relationships. Especially for sites in the drier areas, plants showed higher photosynthetic rates for a given N or P when compared with relationships from the global data set. The best multiple regression for the pooled data set estimated V(cmax) and J(max) from N(DW) and S. However, the best regression for different vegetation types varied, suggesting that the scaling of photosynthesis with leaf traits changed with vegetation types. A new model is presented representing independent constraints by N and P on photosynthesis, which can be evaluated with or without interactions with S. It assumes that limitation of photosynthesis will result from the least abundant nutrient, thereby being less sensitive to the allocation of the non-limiting nutrient to non-photosynthetic pools. The model predicts an optimum proportionality for N and P, which is distinct for V(cmax) and J(max) and inversely proportional to S. Initial tests showed the model to predict V(cmax) and J(max) successfully for other tropical forests characterized by a range of different foliar N and P concentrations.


Asunto(s)
Nitrógeno/metabolismo , Fósforo/metabolismo , Fotosíntesis/fisiología , Árboles/fisiología , África Occidental , Biomasa , Hojas de la Planta/metabolismo , Carácter Cuantitativo Heredable , Análisis de Regresión , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA