Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Dairy Sci ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38851580

RESUMEN

Inhibition of methyl-coenzyme M reductase can suppress the activity of ruminal methanogens, thereby reducing enteric methane emissions of ruminants. However, developing specific and environmentally friendly inhibitors is a challenging endeavor. To identify a natural and effective methane inhibitor that specifically targets methyl-coenzyme M reductase, molecular docking technology was employed to screen a library of phytogenic compounds. A total of 52 candidate compounds were obtained through molecular docking technique. Rosmarinic acid (RA) was one of the compounds that could traverse a narrow channel and bind to the active sites of methyl-coenzyme M reductase, with a calculated binding free energy of -9.355 kcal/mol. Furthermore, the effects of rosmarinic acid supplementation on methane production, rumen fermentation, and the microorganism's community in dairy cows were investigated through in vitro rumen fermentation simulations according to a random design. Supplementation of RA resulted in a 15% decrease in methane production compared with the control. In addition, RA increased the molar proportion of acetate and propionate, whereas the sum of acetate and butyrate divided by propionate was decreased. At the bacterial level, the relative abundance of Rikenellaceae RC9 gut group, Christensenellaceae R7 group, Candidatus Saccharimonas, Desulfovibrio, and Lachnospiraceae FE2018 group decreased with RA supplementation. Conversely, the addition of RA significantly increased the relative abundance of DNF00809 (a genus from Eggerthellaceae), Denitrobacterium, an unclassified genus from Eggerthellaceae, an unclassified genus from Bacteroidales, and an unclassified genus from Atopobiaceae. At the archaeal level, the relative abundance of Methanobrevibacter decreased, while that of Methanosphaera increased with the RA supplementation. These findings suggested that RA has the potential to be used as a novel natural additive for inhibiting ruminal methane production.

2.
Gut ; 70(5): 853-864, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33589511

RESUMEN

OBJECTIVE: Microbial exposure is critical to neonatal and infant development, growth and immunity. However, whether a microbiome is present in the fetal gut prior to birth remains debated. In this study, lambs delivered by aseptic hysterectomy at full term were used as an animal model to investigate the presence of a microbiome in the prenatal gut using a multiomics approach. DESIGN: Lambs were euthanised immediately after aseptic caesarean section and their cecal content and umbilical cord blood samples were aseptically acquired. Cecal content samples were assessed using metagenomic and metatranscriptomic sequencing to characterise any existing microbiome. Both sample types were analysed using metabolomics in order to detect microbial metabolites. RESULTS: We detected a low-diversity and low-biomass microbiome in the prenatal fetal gut, which was mainly composed of bacteria belonging to the phyla Proteobacteria, Actinobacteria and Firmicutes. Escherichia coli was the most abundant species in the prenatal fetal gut. We also detected multiple microbial metabolites including short chain fatty acids, deoxynojirimycin, mitomycin and tobramycin, further indicating the presence of metabolically active microbiota. Additionally, bacteriophage phiX174 and Orf virus, as well as antibiotic resistance genes, were detected in the fetal gut, suggesting that bacteriophage, viruses and bacteria carrying antibiotic resistance genes can be transmitted from the mother to the fetus during the gestation period. CONCLUSIONS: This study provides strong evidence that the prenatal gut harbours a microbiome and that microbial colonisation of the fetal gut commences in utero.


Asunto(s)
Feto/metabolismo , Feto/microbiología , Microbioma Gastrointestinal/genética , Ovinos/genética , Ovinos/microbiología , Animales , Femenino , Perfilación de la Expresión Génica , Metabolómica , Metagenómica , Modelos Animales , Embarazo
3.
Environ Microbiol ; 23(11): 6557-6568, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34490978

RESUMEN

Solid diet supplementation in the early life stages of ruminants could improve rumen microbiota and tissue development. However, most studies focus on bacteria in the rumen content community. The microbiota attached on rumen epithelium are rarely investigated, and their correlations with rumen content bacteria and host transcripts are unknown. In this study, rumen digesta attached in the epithelium from goats in three diet regimes (milk replacer only, milk replacer supplemented concentrate and milk replacer supplemented concentrate plus alfalfa pellets) were collected for measurement of the epithelial microbiota using next generation sequencing. Correspondingly, the rumen tissues of the same animals were measured with the host transcriptome. The distinct microbial structures and compositions between rumen content and epithelial communities were associated with solid diet supplementation. Regarding rumen development in pre-weaning ruminants, a solid diet, especially its accompanying neutral detergent fibre nutrients, was the most significant driver that influenced the rumen microbiota and epithelium gene expression. Compared with content bacteria, rumen epithelial microbiota had a stronger association with the host transcriptome. The host transcriptome correlated with host phenotypes were associated with rumen epithelial microbiota and solid diet. This study reveals that the epithelial microbiota is crucial for proper rumen development, and solid diet could improve rumen development through both the rumen content and epithelial microbiota.


Asunto(s)
Microbiota , Rumen , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Microbiota/genética , Rumen/microbiología , Rumiantes/genética , Transcriptoma
4.
Amino Acids ; 52(5): 781-792, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32372391

RESUMEN

Lysine (Lys) is majorly metabolized in the liver. The liver functional consequences of a dietary Lys deficiency in young Holstein calves are unknown. This study aimed to investigate the effects of Lys deficiency in Holstein calf livers using RNA-sequencing and untargeted LC-MS metabolomics. Calves (n = 36; initial body weight 101.2 ± 10.8 kg; 90-day-old) were fed restricted diets, for 90 days, containing 19.2% crude protein that varied in Lys content (PC group 1.21%; PC-Lys group 0.85%; dry matter basis) for 90 days. Body weight, average daily gain, gain/feed, and Lys intake were significantly decreased in response to Lys deficiency (P < 0.05). Dry matter intake was not altered (P > 0.05). Network and pathway analyses revealed that noradrenaline, adenosine 5'-monophosphate, acetyl-CoA, and coenzyme A were significantly decreased. Regulating of lipolysis in adipocytes pathway and fatty acid degradation pathway were downregulated. We also identified eight significantly differentially expressed genes (SDEGs), among which adrenoceptor beta 2 (ADRB2), WAP four-disulfide core domain 2 (WFDC2), and claudin-4 (CLDN4) were associated with inhibition of lipolysis, and carbon catabolite repression 4-like (CCRN4L), FOS like 2 (FOSL2), and arginase 2 (ARG2) were associated with inhibiting lipid synthesis. Correlation tests showed that coenzyme A was strongly correlated with SDEGs (0.82 ≤|r|≤ 0.96). Acetyl-CoA and adenosine 5'-monophosphate were strongly correlated with CCRN4L (0.90 ≤|r|≤ 0.92), indicating a strong correlation between the changes in SDEGs and these metabolites. In conclusion, Lys deficiency caused dysplasia and affected lipid metabolism in the liver by inhibiting lipolysis and lipid synthesis in calves.


Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Hígado/metabolismo , Lisina/deficiencia , Metaboloma , Transcriptoma , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Recién Nacidos , Bovinos , Cromatografía Liquida , Femenino , Espectrometría de Masas , RNA-Seq
5.
Appl Microbiol Biotechnol ; 104(15): 6623-6634, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32519120

RESUMEN

This study aimed to evaluate the effects of partial reducing rumen-protected Lys (RPLys) on rumen fermentation and microbial composition in heifers. Three ruminal fistulated Holstein Friesian bulls were used to determine the effective degradability of RPLys using an in situ method at incubation times of 0, 2, 6, 12, 16, 24, 36, and 48 h. Thereafter, 36 Holstein heifers at 90 days of age were assigned to one of two dietary treatments: a theoretically balanced amino acid diet (PC group; 1.21% Lys, 0.4% Met) or a 30% Lys-reduced diet (PCLys group, 0.85% Lys, 0.4% Met). Rumen fluid samples from five heifers in each group were extracted using esophageal tubing on day 90 to determine pH, microprotein, ammonia, volatile fatty acids, and microbial communities. Results showed that the effective ruminal degradability was 25.76%. Furthermore, differences in rumen fermentation parameters and alpha diversity of the microbiota between the two groups were not significant, but beta diversity was significant. Based upon relative abundance analysis, short-chain fatty acid-producing bacteria, including Sharpea, Syntrophococcus, [Ruminococcus]_gauvreauii_group, Acetitomaculum, and [Eubacterium]_nadotum_group belonging to Firmicutes, were significantly decreased in the PCLys group. Spearman's analysis revealed a positive correlation between the butyrate molar proportion and the relative abundance of butyrate-producing bacteria such as [Eubacterium]_nadotum_group, Coprococcus_1, Ruminococcaceae_UCG_013, Pseudoramibacter, and Lachnospiraceae_UCG_010. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States analysis further validated that RPLys deduction influenced energy metabolism. Together, our findings highlight the role of RPLys or Lys in butyrate-producing bacteria. However, the number of bacteria affected by Lys was very limited and insufficient to alter rumen fermentation. Key Points • Reducing 30% Lys via rumen-protected Lys did not affect rumen fermentation parameters and alpha diversity of microbiota of Holstein heifers. It meant that the ruminal fermentation pattern was not changed. • Reducing 30% Lys via rumen-protected lysine significantly decreased relative abundance of short-chain fatty acid-producing bacteria belonging to Firmicutes. • Functions of microorganisms were changed by reducing 30% Lys via rumen-protected Lys, especially amino acid metabolism. It may affect the amino acid composition of microprotein.


Asunto(s)
Alimentación Animal/análisis , Bacterias/metabolismo , Fermentación , Microbioma Gastrointestinal , Lisina/metabolismo , Rumen/química , Rumen/microbiología , Animales , Bacterias/clasificación , Bovinos , Suplementos Dietéticos/análisis , Metabolismo Energético , Femenino , Masculino
6.
J Anim Physiol Anim Nutr (Berl) ; 104(3): 831-837, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32166787

RESUMEN

The requirement of net protein (NP) and metabolizable protein (MP) by Dorper crossbred ewe lambs grown from 35 to 50 kg of body weight (BW) was assessed by comparative slaughter experiment. Thirty-five ewe lambs (33.5 ± 0.6 kg BW) of F1 crosses of Dorper × thin-tailed Han sheep were used: 7 lambs were slaughtered as reference animals at the start of the trial, and the remaining 28 lambs were randomly divided into 4 groups of 7 lambs each. Three of the 4 groups were fed a pelleted mixed diet (concentrate/roughage = 44:56, dry matter basis) for ad libitum intake or 65% or 45% of ad libitum intake, and they were all slaughtered when the lambs that were fed ad libitum reached 50 kg BW. The lambs from the fourth group were also fed ad libitum and slaughtered at 43 kg BW as the intermediate group. The intake of MP by the animals of these 4 groups was estimated, and their total body protein and protein retention were measured. The daily requirements of NP and MP for maintenance were 1.52 and 3.98 g/kg BW0.75 , respectively, with a partial efficiency of MP utilization for maintenance of 0.38. The MP requirement for growth ranged from 77.4 to 124.5 g/day for average daily gains from 100 to 250 g BW, and the partial efficiency of MP utilization for growth was 0.66. The Dorper crossbred ewe lambs required more MP for both maintenance and growth in comparison with the recommendations of the US nutritional system.


Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Proteínas en la Dieta/administración & dosificación , Ovinos/fisiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Femenino , Necesidades Nutricionales , Ovinos/genética
7.
Asian-Australas J Anim Sci ; 33(5): 732-741, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32054236

RESUMEN

OBJECTIVE: The study was conducted to investigate the effects of Broussonetia papyrifera L.(B. papyrifera) silage on growth performance, serum biochemical parameters, meat quality, and meat amino acids and fatty acids compositions in beef cattle. METHODS: Sixty-four male Angus beef cattle were assigned to 4 groups with 4 pens in each group and 4 beef cattle in each pen, and fed with the total mixed ration supplemented with 0%, 5%, 10%, or 15% B. papyrifera silage for 100 days (control group, 5% group, 10% group and 15% group) separately. RESULTS: Beef cattle had significantly higher final body weight (BW) in 15% group, higher average daily gain (ADG) and dry matter intake (DMI) in 5% group, 10% group and 15% group, and higher feed conversion ratio (FCR) in 10% group and 15% group. Significantly higher blood superoxide dismutase (SOD) concentration was noted in 15% group, higher blood total antioxidant capacity (TAC) in 10% group and 15% group, lower 8-hydroxydeoxyguanosine (8-OHdG) and malondialdehyde (MDA) in 15% group. Meat had lower pH in 15% group, higher Commission International DeI'Eclairage (CIE) L* in 5% group, 10% group, and 15% group, and lower drip loss in 15% group. Greater concentration of meat polyunsaturated fatty acids (PUFA) was observed in 10% group and 15% group, and docosahexaenoic acid (DHA) in 15% group. CONCLUSION: Diet with 15% B. papyrifera silage could improve performance and increase final BW, ADG, DMI, and FCR, enhance the antioxidant functions by decreasing blood 8-OHdG and MDA and increasing blood SOD and TAC, improve the meat quality by lowing pH and drip loss and increasing CIE L*, increase the meat PUFA and DHA concentration. Polyphenols and flavonoids might be the main components responsible for the antioxidant activity and anti-biohydrogenation in the B. papyrifera silage. And B. papyrifera silage could be used as a new feedstuff in beef cattle nutrition.

8.
Environ Microbiol ; 21(7): 2333-2346, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30938032

RESUMEN

Early gut microbial colonization is important for postnatal metabolic and immune development. However, little is known about the effects of different feeding modes (suckling versus bottle-feeding) or microbial sources on this process in farm animals. We found that suckled and bottle-fed newborn lambs had their own distinct gut microbiota. Results from 16S rRNA gene sequencing and qPCR showed that, compared with suckling, bottle feeding significantly increased the abundances of Escherichia/Shigella, Butyricicoccus, and Clostridium XlVa, while significantly decreased the abundance of Clostridium XI. The higher levels of Escherichia/Shigella in bottle-fed lambs suggest that artificial feeding may increase the number of potential pathogens and delay the establishment of the anaerobic environment and anaerobic microbes. Feeding modes also affected the direct transmission of bacteria from the mother and the environment to newborns. The SourceTracker analysis estimated that the early gut microbes of suckled lambs were mainly derived from the mother's teats (43%) and ambient air (28%); whereas those of bottle-fed lambs were dominated by bacteria from the mother's vagina (46%), ambient air (31%), and the sheep pen floor (12%). These findings advance our understanding of gut microbiota in early life and may help design techniques to improve gut microbiota and health.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Alimentación con Biberón/métodos , Microbioma Gastrointestinal/fisiología , Ovinos/microbiología , Animales , Animales Recién Nacidos/microbiología , Bacterias/genética , Femenino , Microbioma Gastrointestinal/genética , Humanos , Recién Nacido , ARN Ribosómico 16S/genética , Vagina/microbiología
9.
Trop Anim Health Prod ; 51(7): 1935-1941, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31134555

RESUMEN

This study was conducted to evaluate the use of ramie as forage on growth performance, serum biochemical indices, and meat quality of Boer goats. For this, 60 Boer lambs were divided into four groups fed the TMR with 0%, 10%, 20%, and 40% (control, and groups I, II, III, respectively) ramie. The experiment lasted for 90 days with a pretest for 15 days. Venous blood and longissimus dorsi (LD) muscle samples were collected after 24 h fasted at the end of the experiment. The results showed that ramie seems no significant changes in average daily gain (ADG) and other parameters for growth performance, only 40% ramie in TMR significantly reduced average daily feed intake (ADFI) (P < 0.05). Compared to the control, group II (20%) showed significant increases in total protein (TP) and globulin (GLB) levels, and decreases in albumin/globulin level (P < 0.05) in serum. Meanwhile, serum total cholesterol (TC) (P < 0.05) and free thyroxine (FT4) level were significantly reduced with up to 20% or more ramie in TMR. Moreover, the total amino acid and flavor amino acid levels in LD muscle were not affected by ramie. However, significant increases (P < 0.05) were observed in linoleic acid, polyunsaturated fatty acid, and polyunsaturated fatty acid/saturated fatty acid levels in group II. Overall, these results indicated that up to 20% ramie in TMR have no impairment in growth performance, health and meat quality, whereas high level ramie might have a negative effect on feed intake.


Asunto(s)
Alimentación Animal/análisis , Boehmeria , Dieta/veterinaria , Carne/normas , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados , Cabras/crecimiento & desarrollo , Cabras/fisiología , Distribución Aleatoria
10.
Asian-Australas J Anim Sci ; 32(9): 1389-1396, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30744330

RESUMEN

Objectives: The current study analysed the relationships between methane (CH4) output from animal and dietary factors. Methods: The dataset was obtained from 159 Dorper × thin-tailed Han lambs from our seven studies, and CH4 production and energy metabolism data were measured in vivo by an open-circuit respiratory method. All lambs were confined indoors and fed pelleted diet during the whole experimental period in all studies. Data from two-thirds of lambs were used to develop linear and multiple regressions to describe the relationship between CH4 emission and dietary variables, and data from the remaining one third of lambs were used to validate the established models. Results: CH4 emission (g/d) was positively related to dry matter intake (DMI) and gross energy intake (GEI) (P < 0.001). CH4 energy/GEI was negatively related to metabolizable energy/gross energy (ME/GE) and metabolizable energy/digestible energy (ME/DE) (P < 0.001). Using DMI to predict CH4 emission (g/d) resulted in a coefficient of determination (R2) of 0.80. Using GEI, DEI, and MEI predict CH4 energy/GEI resulted in a R2 of 0.92. Conclusion: the prediction equations established in the current study are useful to develop appropriate feeding and management strategies to mitigate CH4 emissions from sheep.

11.
BMC Microbiol ; 18(1): 69, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29996759

RESUMEN

BACKGROUND: The rumen bacterial community plays a critical role in feeds degradation and productivity. The effects of different forage to concentrate ratios on the ruminal microbial population structure have been studied extensively; however, research into changes in the ruminal bacterial community composition in heifers fed different energy level diets, with the same forage to concentrate ratio, has been very limited. The purpose of this study was to investigate the effects of different dietary energy levels, with the same forage to concentrate ratio, on ruminal bacterial community composition of heifers. Furthermore, we also determine the relationship between rumen bacteria and ruminal fermentation parameters. RESULTS: The 16S rRNA gene sequencing showed that, under the same forage to concentrate ratio of 50:50, an 8% difference in dietary energy level had no significant impact on the alpha diversity and the relative abundance of the major phyla and most of the major genera in heifers. In all the treatments groups, Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phyla. Spearman correlation analysis between the relative abundances of the rumen bacteria at the genus level and the fermentation parameters showed that the relative abundances of Prevotella and BF311 were positively correlated with the ammonia nitrogen and butyrate concentrations, and these two genera were negatively correlated with the propionate and isovalerate concentrations, respectively, and the genus Bifidobacterium was positively correlated with the butyrate concentration and was negatively correlated with propionate and isovalerate concentration. The total volatile fatty acid concentration was positively correlated with BF311 abundances, and was negatively correlated with Trichococcus and Facklamia abundances. CONCLUSIONS: Under the same forage to concentrate ratio condition of 50:50, an 8% difference in dietary energy levels had little impact on rumen bacterial community composition in heifers. The correlations between some genera of ruminal bacteria and the concentrations of volatile fatty acids and ammonia nitrogen might be indicative that the ruminal fermentation parameters are strongly influenced by the rumen bacterial community composition.


Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Rumen/metabolismo , Rumen/microbiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodiversidad , Bovinos , Metabolismo Energético , Femenino , Fermentación , ARN Ribosómico 16S/genética
12.
J Sci Food Agric ; 98(2): 661-666, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28665513

RESUMEN

BACKGROUND: We determined how supplementing the diet of lactating, multiparous Holstein dairy cows with a preparation of Moringa oleifera rachises and twigs affected their milk production and quality and the levels of plasma antioxidants. RESULTS: We found that milk yield increased in cows receiving the 6% (w/w) moringa supplement compared with that of the control. Addition of the moringa supplement increased the concentration of milk fat and decreased the somatic cell count in the milk. However, protein, glucose and total solid and urea nitrogen concentrations in the milk were the same for all treatments. The concentration of glutathione peroxidase increased for cows fed the moringa supplement compared with the control. The percentages of total unsaturated fatty acids, mono-unsaturated fatty acids, and polyunsaturated fatty acids including n-3 polyunsaturated fatty acid increased in the milk of cows fed the moringa supplement compared with those of the controls. CONCLUSION: Addition of the moringa supplement into the diet of lactating multiparous cows improved milk production and health status and modified milk fatty acid profile positively. The results suggested that moringa supplement could be used as a diet supplement for producing high quality and healthier milk. © 2017 Society of Chemical Industry.


Asunto(s)
Alimentación Animal/análisis , Bovinos/fisiología , Dieta/veterinaria , Lactancia/efectos de los fármacos , Leche/química , Moringa oleifera , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Antioxidantes/metabolismo , Ácidos Grasos/química , Femenino
13.
Asian-Australas J Anim Sci ; 31(8): 1259-1266, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29381894

RESUMEN

OBJECTIVE: This study was carried out to investigate the possible application of Broussonetia papyrifera (B. papyrifera) silage as a functional feeding stuff in dairy cattle. METHODS: Seventy-two Holstein cows were divided into four groups randomly and allocated to 6 pens with 3 individuals in each group and fed the original total mixed ratio (TMR) in the dairy farm or the new TMR with 5%, 10%, and 15% B. papyrifera silage, separately. Feed intake were recorded, milk and blood samples were collected, and milk composition, blood metabolites and milk fatty acids composition were measure at the end of the experiment. RESULTS: Dry matter intake of cows decreased when they fed on diet with B. papyrifera, but no differences were observed in body condition score, milk yield, milk protein and lactose, feed efficiency and serum metabolites between groups. Both 10% or 15% of B. papyrifera silage in the diet significantly increased the immunoglobulin A (IgA) and IgG in serum, 15% of B. papyrifera silage increased the content of serum catalase, superoxide dismutase, total antioxidant capacity, and decreased the content of 8-hydroxy-2'-deoxyguanosine. Furthermore, 10% or 15% of B. papyrifera silage resulted in a significant decrease in the milk somatic cell count, and increased the polyunsaturated fatty acids content in the milk. CONCLUSION: The diets with 10% to 15% of B. papyrifera silage might enhance the immune and antioxidant function of dairy cows and increase the polyunstaturated fatty acid concentration in the milk.

14.
Asian-Australas J Anim Sci ; 31(6): 864-872, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29103278

RESUMEN

OBJECTIVE: The objective of this study was to determine the effect of weaning age on intake, performance, nutrition metabolism and serum parameters of beef calves. METHODS: Sixty Droughtmaster crossbred calves were assigned to 5 groups with 12 calves in each group. The calves in control group remained with the dams till the 22-week age, while the calves weaned at 28 d (4 wk), 42 d (6 wk), 56 d (8 wk), and 70 d (10 wk) of age were sent to group 4 wk, group 6 wk, group 8 wk, and group 10 wk, respectively, and then were fed on milk replacer till the 22-week age. Feed intake and body weight and size were record and blood metabolites were measured. And 24 calves of them (6 in each group) were picked randomly for digestion and metabolism trail. Feed, feces and urine sample were taken and measured. RESULTS: Dry matter intake of calves in group 4 wk was significantly lower than those in the remaining groups from wk 17 to 22 (p<0.05). Feed efficiency of the calves was higher in groups 4 wk and 6 wk than those in groups 8 wk and 10 wk from 11 to 13 wk (p<0.05), and calves had higher feed efficiency in group 4 wk, group 6 wk, and group 8 wk than those in group 10 wk from wk 14 to wk 22. Calves in group 4 wk and 6 wk had lower body weight than group 8 wk and group 10 wk and control group at 10-week age (p<0.05) and 13-week age (p<0.05), and calves in group 6 wk had no significant difference in body weight with control group, group 8 wk and 10 wk (p>0.05) but was higher than that of group 4 wk (p<0.05). Calves in group 6 wk had higher final body weight and total gain than group 4 wk, but no difference of total gain with that of groups 8 wk, 10 wk, and control group. And weaning calves at 6-week age brought higher feed efficiency and average daily gain from wk 14 to wk 22, and higher dry matter and organic matter digestibility at 21 wk. CONCLUSION: It is concluded that the weaning of calves at 6 weeks of age gave positive results.

15.
Asian-Australas J Anim Sci ; 30(11): 1557-1562, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28423879

RESUMEN

OBJECTIVE: This study was conducted to investigate the effects of weaning times on the growth performance, rumen fermentation and microbial communities of yellow cattle calves. METHODS: Eighteen calves were assigned to a conventional management group that was normally weaned (NW, n = 3) or to early weaned (EW) group where calves were weaned when the feed intake of solid feed (starter) reached 500 g (EW500, n = 5), 750 g (EW750, n = 5), or 1,000 g (EW1,000, n = 5). RESULTS: Compared with NW, the EW treatments increased average daily gain (p<0.05). The calves in EW750 had a higher (p<0.05) starter intake than those in EW1,000 from wk 9 to the end of the trial. The concentrations of total volatile fatty acids in EW750 were greater than in NW and EW1,000 (p<0.05). The EW treatments decreased the percentage of acetate (p<0.05). The endogenous enzyme activities of the rumen were increased by EW (p<0.05). EW had no effect on the number of total bacteria (p>0.05), but changes in bacterial composition were found. CONCLUSION: From the present study, it is inferred that EW is beneficial for rumen fermentation, and weaning when the feed intake of the starter reached 750 g showed much better results.

16.
Asian-Australas J Anim Sci ; 27(2): 161-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25049939

RESUMEN

THIS STUDY AIMED TO INVESTIGATE DIETARY CONCENTRATE: forage ratios (C:F) and undegraded dietary protein (UDP) on nitrogen balance and urinary excretion of purine derivatives (PD) in lambs. Four Dorper×thin-tailed Han crossbred castrated lambs with 62.3±1.9 kg body weight at 10 months of age were randomly assigned to four dietary treatments in a 2×2 factorial arrangement of two levels of C:F (40:60 and 60:40) and two levels of UDP (35% and 50% of CP), according to a complete 4×4 Latin-square design. Each experimental period lasted for 19 d. After a 7-d adaptation period, lambs were moved into individual metabolism crates for 12 d including 7 d of adaption and 5 d of metabolism trial. During the metabolism trial, total urine was collected for 24 h and spot urine samples were also collected at different times. Urinary PD was measured using a colorimetric method and creatinine was measured using an automated analyzer. Intake of dry matter (DM) (p<0.01) and organic matter (OM) (p<0.01) increased as the level of UDP decreased. Fecal N was not affected by dietary treatment (p>0.05) while urinary N increased as the level of UDP decreased (p<0.05), but decreased as dietary C:F increased (p<0.05). Nitrogen retention increased as dietary C:F increased (p<0.05). As dietary C:F increased, urinary excretion of PD increased (p<0.05), but was not affected by dietary UDP (p>0.05) or interaction between dietary treatments (p>0.05). Daily excretion of creatinine was not affected by dietary treatments (p<0.05), with an average value of 0.334±0.005 mmol/kg BW(0.75). A linear correlation was found between total PD excretion and PDC index (R(2) = 0.93). Concentrations of creatinine and PDC index in spot urine were unaffected by sampling time (p>0.05) and a good correlation was found between the PDC index (average value of three times) of spot urine and daily excretion of PD (R(2) = 0.88). These results suggest that for animals fed ad libitum, the PDC index in spot urine is effective to predict daily excretion of PD. In order to improve the accuracy of the spot sampling technique, an appropriate lag phase between the time of feeding and sampling should be determined so that the sampling time can coincide with the peak concentration of PD in the urine.

17.
Microbiol Spectr ; 12(1): e0131423, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38014976

RESUMEN

IMPORTANCE: Yaks, as ruminants inhabiting high-altitude environments, possess a distinct rumen microbiome and are resistant to extreme living conditions. This study investigated the microbiota, resistome, and functional gene profiles in the rumen of yaks fed milk or milk replacer (MR), providing insights into the regulation of the rumen microbiome and the intervention of antimicrobial resistance in yaks through dietary methods. The abundance of Prevotella members increased significantly in response to MR. Tetracycline resistance was the most predominant. The rumen of yaks contained multiple antimicrobial resistance genes (ARGs) originating from different bacteria, which could be driven by MR, and these ARGs displayed intricate and complex interactions. MR also induced changes in functional genes. The enzymes associated with fiber degradation and butyrate metabolism were activated and showed close correlations with Prevotella members and butyrate concentration. This study allows us to deeply understand the ruminal microbiome and ARGs of yaks and their relationship with rumen bacteria in response to different milk sources.


Asunto(s)
Microbiota , Leche , Animales , Bovinos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Butiratos , Farmacorresistencia Bacteriana/genética , Microbiota/genética , Rumen/microbiología
18.
Microbiome ; 12(1): 131, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030599

RESUMEN

BACKGROUND: The average daily gain (ADG) of preweaning calves significantly influences their adult productivity and reproductive performance. Gastrointestinal microbes are known to exert an impact on host phenotypes, including ADG. The aim of this study was to investigate the mechanisms by which gastrointestinal microbiome regulate ADG in preweaning calves and to further validate them by isolating ADG-associated rumen microbes in vitro. RESULTS: Sixteen Holstein heifer calves were selected from a cohort with 106 calves and divided into higher ADG (HADG; n = 8) and lower ADG (LADG; n = 8) groups. On the day of weaning, samples of rumen contents, hindgut contents, and plasma were collected for rumen metagenomics, rumen metabolomics, hindgut metagenomics, hindgut metabolomics, and plasma metabolomics analyses. Subsequently, rumen contents of preweaning Holstein heifer calves from the same dairy farm were collected to isolate ADG-associated rumen microbes. The results showed that the rumen microbes, including Pyramidobacter sp. C12-8, Pyramidobacter sp. CG50-2, Pyramidobacter porci, unclassified_g_Pyramidobacter, Pyramidobacter piscolens, and Acidaminococcus fermentans, were enriched in the rumen of HADG calves (LDA > 2, P < 0.05). Enrichment of these microbes in HADG calves' rumen promoted carbohydrate degradation and volatile fatty acid production, increasing proportion of butyrate in the rumen and ultimately contributing to higher preweaning ADG in calves (P < 0.05). The presence of active carbohydrate degradation in the rumen was further suggested by the negative correlation of the rumen microbes P. piscolens, P. sp. C12-8 and unclassified_g_Pyramidobacter with the rumen metabolites D-fructose (R < - 0.50, P < 0.05). Widespread positive correlations were observed between rumen microbes (such as P. piscolens, P. porci, and A. fermentans) and beneficial plasma metabolites (such as 1-pyrroline-5-carboxylic acid and 4-fluoro-L-phenylalanine), which were subsequently positively associated with the growth rate of HADG calves (R > 0.50, P < 0.05). We succeeded in isolating a strain of A. fermentans from the rumen contents of preweaning calves and named it Acidaminococcus fermentans P41. The in vitro cultivation revealed its capability to produce butyrate. In vitro fermentation experiments demonstrated that the addition of A. fermentans P41 significantly increased the proportion of butyrate in the rumen fluid (P < 0.05). These results further validated our findings. The relative abundance of Bifidobacterium pseudolongum in the hindgut of HADG calves was negatively correlated with hindgut 4-hydroxyglucobrassicin levels, which were positively correlated with plasma 4-hydroxyglucobrassicin levels, and plasma 4-hydroxyglucobrassicin levels were positively correlated with ADG (P < 0.05). CONCLUSIONS: This study's findings unveil that rumen and hindgut microbes play distinctive roles in regulating the preweaning ADG of Holstein heifer calves. Additionally, the successful isolation of A. fermentans P41 not only validated our findings but also provided a valuable strain resource for modulating rumen microbes in preweaning calves. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Rumen , Destete , Animales , Bovinos , Rumen/microbiología , Rumen/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Bacterias/genética , Femenino , Fermentación , Metagenómica/métodos , Metabolómica , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/análisis , Aumento de Peso , Butiratos/metabolismo
19.
Sci Data ; 11(1): 749, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987532

RESUMEN

Although early solid diet supplementation is a common practice to improve the growth and development in goat kids, its biological mechanism how solid diet induces rumen microbiota and epithelial development is still unknow. In this study, rumen fermentation parameters, 16S rRNA sequencing for rumen content and epithelial microbiota, transcriptomics and proteomics of epithelium were determined to classify the effects of solid diet supplementation. Here, we classified the changes of goat phenotypes (i.e., growth performance, rumen fermentation and development) and linked them to the changes of rumen microbiota, transcriptome and expressed proteins. The mechanism of solid diet improving rumen development was elucidated preliminarily. Moreover, different roles between the rumen content and epithelial microbiota were identified. Thess datasets expands our understanding of the association between the early diet intervention and rumen development, providing the useful information how nutrient strategy affects rumen function and subsequently improves the host growth. The generated data provides insights in the importance of rumen niche microbiota and microbe-host interactions, which benefits future studies.


Asunto(s)
Dieta , Cabras , Rumen , Transcriptoma , Animales , Rumen/microbiología , Rumen/metabolismo , Dieta/veterinaria , Alimentación Animal/análisis , Proteómica , Microbioma Gastrointestinal , ARN Ribosómico 16S/genética , Epitelio/metabolismo , Fermentación
20.
Animals (Basel) ; 14(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38539957

RESUMEN

The purpose of this study was to investigate the effects of feed ingredients with different protein-to-fat ratios on growth, slaughter performance and meat quality of Small-Tail Han lambs. Forty-five Small-Tail Han lambs (♂) (BW = 34.00 ± 2.5 kg, age = 120 ± 9 d) were randomly divided into groups with three different experimental treatments: (1) PF 5, with the ratio of protein to fat (CP:EE) of 50 to 5; (2) PF10, CP: EE = 50:10; (3) PF20, CP: EE = 50:20. Each treatment group had 15 lambs, and each sheep was a repeat. This experiment lasted for 65 days, with feed intake recorded daily, and animals being weighed on days 0, 30, and 65. At the conclusion of the experiment, eight lambs from each group were slaughtered to assess slaughter performance and meat quality. The results showed that the average daily gain (ADG) of the three groups were 315.27, 370.15 and 319.42 g/d, respectively. The PF10 group had the highest ADG (370.15 g) (p < 0.05). Forestomach weights (1216.88 g) of the PF10 group were significantly higher than those of the other groups (p < 0.05). There were no differences (p > 0.05) in fat percentages in various parts of body among treatments. Feed conversion of the PF10 group was higher (p < 0.05) than that of PF 5 and PF 20 groups. Furthermore, the PF10 group had a higher (p > 0.05) carcass weight and slaughter rate and there were few differences between the other groups in terms of dry matter intake, meat quality, organ weight, and fat deposition (p > 0.05). The protein-energy supplement with protein-to-fat ratio, PF10 appeared to be more desirable to promote the growth and development in Small-Tail Han Lambs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA