Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

País de afiliación
Intervalo de año de publicación
1.
Mem Inst Oswaldo Cruz ; 113(4): e170345, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29412342

RESUMEN

BACKGROUND: Leishmaniasis, one of the most neglected diseases, is a serious public health problem in many countries, including Brazil. Currently available treatments require long-term use and have serious side effects, necessitating the development of new therapeutic interventions. Because translocator protein (TSPO) levels are reduced in Leishmania amazonensis-infected cells and because this protein participates in apoptosis and immunomodulation, TSPO represents a potential target for Leishmania chemotherapy. The present study evaluated PK11195, a ligand of this protein, as an anti-leishmanial agent. OBJECTIVE: To evaluate the leishmanicidal activity of PK11195 against L. amazonensis in infected CBA mouse macrophages in vitro. METHODS: The viability of axenic L. amazonensis, Leishmania major, and Leishmania braziliensis promastigotes was assessed after 48 h treatment with PK11195 (0.2-400 µM). Additionally, intracellular parasite viability was evaluated to determine IC50 values and the number of viable parasites in infected macrophages treated with PK11195 (50-100 µM). Infected macrophages were then treated with PK11195 (25-100 µM) to determine the percentage of L. amazonensis-infected cells and the number of parasites per infected cell. Electron microscopy was used to investigate morphological changes caused by PK11195. The production of free oxygen radicals, nitric oxide, and pro-inflammatory cytokines was also evaluated in infected macrophages treated with PK11195 and primed or not primed with IFN-γ. FINDINGS: Median IC50 values for PK11195 were 14.2 µM for L. amazonensis, 8.2 µM for L. major, and 3.5 µM for L. braziliensis. The selective index value for L. amazonensis was 13.7, indicating the safety of PK11195 for future testing in mammals. Time- and dose-dependent reductions in the percentage of infected macrophages, the number of parasites per infected macrophage, and the number of viable intracellular parasites were observed. Electron microscopy revealed some morphological alterations suggestive of autophagy. Interestingly, MCP-1 and superoxide levels were reduced in L. amazonensis-infected macrophages treated with PK11195. MAIN CONCLUSIONS: PK11195 causes the killing of amastigotes in vitro by mechanisms independent of inflammatory mediators and causes morphological alterations within Leishmania parasites, suggestive of autophagy, at doses that are non-toxic to macrophages. Thus, this molecule has demonstrated potential as an anti-leishmanial agent.


Asunto(s)
Isoquinolinas/farmacología , Leishmania braziliensis/efectos de los fármacos , Leishmania major/efectos de los fármacos , Leishmania mexicana/efectos de los fármacos , Macrófagos/parasitología , Animales , Leishmania braziliensis/ultraestructura , Leishmania major/ultraestructura , Leishmania mexicana/ultraestructura , Dosificación Letal Mediana , Ratones , Ratones Endogámicos CBA , Microscopía Electrónica de Transmisión , Pruebas de Sensibilidad Parasitaria , Factores de Tiempo
2.
Front Cell Infect Microbiol ; 12: 788196, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463648

RESUMEN

Visceral leishmaniasis (VL) is often associated with hematologic manifestations that may interfere with neutrophil response. Lipophosphoglycan (LPG) is a major molecule on the surface of Leishmania promastigotes, which has been associated with several aspects of the parasite-vector-host interplay. Here, we investigated how LPG from Leishmania (L.) infantum, the principal etiological agent of VL in the New World, influences the initial establishment of infection during interaction with human neutrophils in an experimental setting in vitro. Human neutrophils obtained from peripheral blood samples were infected with either the wild-type L. infantum (WT) strain or LPG-deficient mutant (∆lpg1). In this setting, ∆lpg1 parasites displayed reduced viability compared to WT L. infantum; such finding was reverted in the complemented ∆lpg1+LPG1 parasites at 3- and 6-h post-infection. Confocal microscopy experiments indicated that this decreased survival was related to enhanced lysosomal fusion. In fact, LPG-deficient L. infantum parasites more frequently died inside neutrophil acidic compartments, a phenomenon that was reverted when host cells were treated with Wortmannin. We also observed an increase in the secretion of the neutrophil collagenase matrix metalloproteinase-8 (MMP-8) by cells infected with ∆lpg1 L. infantum compared to those that were infected with WT parasites. Furthermore, collagen I matrix degradation was found to be significantly increased in ∆lpg1 parasite-infected cells but not in WT-infected controls. Flow cytometry analysis revealed a substantial boost in production of reactive oxygen species (ROS) during infection with either WT or ∆lpg1 L. infantum. In addition, killing of ∆lpg1 parasites was shown to be more dependent on the ROS production than that of WT L. infantum. Notably, inhibition of the oxidative stress with Apocynin potentially fueled ∆lpg1 L. infantum fitness as it increased the intracellular parasite viability. Thus, our observations demonstrate that LPG may be a critical molecule fostering parasite survival in human neutrophils through a mechanism that involves cellular activation and generation of free radicals.


Asunto(s)
Leishmania infantum , Leishmaniasis Visceral , Parásitos , Animales , Glicoesfingolípidos/metabolismo , Humanos , Leishmaniasis Visceral/metabolismo , Neutrófilos/metabolismo , Parásitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Front Immunol ; 10: 2523, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31736955

RESUMEN

In recent decades, studies have shown that, depending on parasite species and host background, autophagy can either favor infection or promote parasite clearance. To date, relatively few studies have attempted to assess the role played by autophagy in Leishmania infection. While it has been consistently shown that Leishmania spp. induce autophagy in a variety of cell types, published results regarding the effects of autophagic modulation on Leishmania survival are contradictory. The present review, after a short overview of the general aspects of autophagy, aims to summarize the current body of knowledge surrounding how Leishmania spp. adaptively interact with macrophages, the host cells mainly involved in controlling leishmaniasis. We then explore the scarce studies that have investigated interactions between these parasite species and the autophagic pathway, and finally present a critical perspective on how autophagy influences infection outcome.


Asunto(s)
Autofagia , Leishmaniasis/inmunología , Macrófagos/inmunología , Animales , Humanos
4.
Sci Rep ; 9(1): 14756, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31611575

RESUMEN

Leishmaniasis is a neglected disease that affects millions of individuals around the world. Regardless of clinical form, treatment is based primarily on the use of pentavalent antimonials. However, such treatments are prolonged and present intense side effects, which lead to patient abandonment in many cases. The search for chemotherapeutic alternatives has become a priority. Heat Shock Protein 90 (Hsp90) inhibitors have recently come under investigation due to antiparasitic activity in Plasmodium sp., Trypanosoma sp. and Leishmania sp. Some of these inhibitors, such as geldanamycin and its analogs, 17-AAG and 17-DMAG, bind directly to Hsp90, thereby inhibiting its activity. Previous studies have demonstrated that different parasite species are more susceptible to some of these inhibitors than host cells. We hypothesized that this increased susceptibility may be due to differences in binding of Hsp90 inhibitors to Leishmania protein compared to host protein. Based on the results of the in silico approach used in the present study, we propose that geldanamycin, 17-AAG and 17-DMAG present an increased tendency to bind to the N-terminal domain of Leishmania amazonensis Hsp83 in comparison to human Hsp90. This could be partially explained by differences in intermolecular interactions between each of these inhibitors and Hsp83 or Hsp90. The present findings demonstrate potential for the use of these inhibitors in the context of anti-Leishmania therapy.


Asunto(s)
Benzoquinonas/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Lactamas Macrocíclicas/farmacología , Leishmania/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Tripanocidas/farmacología , Benzoquinonas/química , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Lactamas Macrocíclicas/química , Leishmania/metabolismo , Leishmaniasis/tratamiento farmacológico , Leishmaniasis/parasitología , Simulación del Acoplamiento Molecular , Proteínas Protozoarias/metabolismo , Tripanocidas/química
5.
Mem. Inst. Oswaldo Cruz ; 113(4): e170345, 2018. graf
Artículo en Inglés | LILACS | ID: biblio-894915

RESUMEN

BACKGROUND Leishmaniasis, one of the most neglected diseases, is a serious public health problem in many countries, including Brazil. Currently available treatments require long-term use and have serious side effects, necessitating the development of new therapeutic interventions. Because translocator protein (TSPO) levels are reduced in Leishmania amazonensis-infected cells and because this protein participates in apoptosis and immunomodulation, TSPO represents a potential target for Leishmania chemotherapy. The present study evaluated PK11195, a ligand of this protein, as an anti-leishmanial agent. OBJECTIVE To evaluate the leishmanicidal activity of PK11195 against L. amazonensis in infected CBA mouse macrophages in vitro. METHODS The viability of axenic L. amazonensis, Leishmania major, and Leishmania braziliensis promastigotes was assessed after 48 h treatment with PK11195 (0.2-400 µM). Additionally, intracellular parasite viability was evaluated to determine IC50 values and the number of viable parasites in infected macrophages treated with PK11195 (50-100 µM). Infected macrophages were then treated with PK11195 (25-100 µM) to determine the percentage of L. amazonensis-infected cells and the number of parasites per infected cell. Electron microscopy was used to investigate morphological changes caused by PK11195. The production of free oxygen radicals, nitric oxide, and pro-inflammatory cytokines was also evaluated in infected macrophages treated with PK11195 and primed or not primed with IFN-γ. FINDINGS Median IC50 values for PK11195 were 14.2 µM for L. amazonensis, 8.2 µM for L. major, and 3.5 µM for L. braziliensis. The selective index value for L. amazonensis was 13.7, indicating the safety of PK11195 for future testing in mammals. Time- and dose-dependent reductions in the percentage of infected macrophages, the number of parasites per infected macrophage, and the number of viable intracellular parasites were observed. Electron microscopy revealed some morphological alterations suggestive of autophagy. Interestingly, MCP-1 and superoxide levels were reduced in L. amazonensis-infected macrophages treated with PK11195. MAIN CONCLUSIONS PK11195 causes the killing of amastigotes in vitro by mechanisms independent of inflammatory mediators and causes morphological alterations within Leishmania parasites, suggestive of autophagy, at doses that are non-toxic to macrophages. Thus, this molecule has demonstrated potential as an anti-leishmanial agent.


Asunto(s)
Humanos , Leishmania mexicana , Utilización de Medicamentos , Macrófagos
6.
Salvador; s.n; 2018. 123 p. ilus, tab.
Tesis en Portugués | LILACS | ID: biblio-1005578

RESUMEN

INTRODUÇÃO: Macrófagos de camundongos CBA controlam a infecção por Leishmania major, no entanto, são permissivos à infecção por Leishmania amazonensis. Os estudos conduzidos, até o momento, sobre o papel desempenhado pela autofagia na infecção por Leishmania levaram a dados controversos. OBJETIVO: No presente trabalho, avaliamos se a resposta autofágica de macrófagos infectados pode ser responsável pela diferença no curso da infecção por essas duas espécies de Leishmania. MATERIAL e MÉTODOS e RESULTADOS: Inicialmente, demonstramos por qPCR e por análise de dados de microarranjos públicos que um número maior de genes relacionados à autofagia é modulado positivamente em células infectadas por L. amazonensis em comparação às infectadas L. major. Ingenuity Pathway Analysis (IPA) demonstrou modulação oposta dos genes relacionados à autofagia entre os macrófagos infectados com L. amazonensis daqueles infectados com L. major. Após 24 h de infecção, a relação LC3-II/Act é aumentada tanto em macrófagos infectados por L. amazonensis quanto nos infectados por L. major em comparação com controles não infectados, mas menos do que em células tratadas com cloroquina. Embora, os vacúolos parasitóforos induzidos por L. major tenham apresentado maior positividade para o marcador degradativo, DQBSA, o recrutamento de LC3 foi maior nos vacúolos parasitóforos induzidos por L. amazonensis. Interessantemente, tanto a indução farmacológica quanto a fisiológica da autofagia aumentaram a viabilidade intracelular de L. amazonensis e L. major, enquanto a inibição da autofagia não teve efeito sobre a viabilidade intracelular desses parasitas. Também demonstramos que a indução da autofagia reduziu a produção de NO por macrófagos infectados por L. amazonensis ou L. major, mas não alterou a atividade da arginase, A análise de componentes principais e agrupamento hierárquico de clusters discriminaram completamente os macrófagos infectados por L. major de células infectadas por L. amazonensis de acordo com a intensidade da infecção e características autofágicas dos vacúolos induzidos por essas duas cepas. CONCLUSÃO: Em conclusão, a infecção por L. amazonensis ou L. major, apesar de ativar similarmente o fluxo autofágico em macrófagos infectados e os parasitos terem sua viabilidade favorecida pela indução da autofagia, promove expressão diferenciada de genes relacionados à autofagia e interação distinta dos vacúolos parasitóforos com compartimentos autofágicos. Essas diferenças são capazes de separar completamente os macrófagos infectados por L. amazonensis daqueles por L. major


INTRODUCTION: CBA mouse macrophages (MΦ) control Leishmania major infection yet are permissive to Leishmania amazonensis. The role played by autophagy in Leishmania infection needs further investigation. OBJECTIVE: Thus, we assessed whether activation of autophagic pathway may account for differences in the response of infected MΦ to these two parasite strains. MATERIAL and METHODS and RESULTS: First, we demonstrated by qPCR and by analysis of publicly available microarray data that a greater number of autophagy-related genes (Atg) are positively modulated in cells infected by L. amazonensis compared to those infected by L. major. Ingenuity Pathway Analyses (IPA) demonstrated opposite modulation in genes in L. amazonensisand L. major-infected MΦ. After 24 h of infection, the autophagic flux measured by LC3-II/Act ratio was similarly increased in either L. amazonensis- or L. majorinfected MΦ compared to uninfected cells. Although L. major-induced parasitophorous vacuoles exhibited greater positivity for the degradative marker, DQ-BSA, LC3 recruitment was increased in L. amazonensis-induced parasitophorous vacuoles. Interestingly, autophagy induction enhanced intracellular L. amazonensis and L. major viability, although autophagy inhibition caused no effect on infection profile. We also demonstrated that autophagy induction reduced NO production by Leishmania-infected MΦ, yet did not alter arginase activity. Moreover, principal component analysis completely discriminated L. major-infected MΦ from L. amazonensis-infected cells regarding infection intensity and autophagic features of parasite-induced PV. CONCLUSION: In conclusion, infection by L. amazonensis or L. major, although similarly activates the autophagic flux in infected MΦ and the parasites have their viability favored by autophagy induction, these Leishmania species cause differentiated expression of Atg and distinct interaction of their parasitophorous vacuoles with autophagic vacuoles. These differences are capable to discriminate MΦ infected by L. amazonensis from those infected by L. major


Asunto(s)
Humanos , Autofagia/inmunología , Leishmania/crecimiento & desarrollo , Leishmania/genética , Leishmania/parasitología
7.
Salvador; s.n; 2014. 115 p. ilus.
Tesis en Portugués | LILACS | ID: biblio-1000932

RESUMEN

A Leishmania é um parasito intracelular obrigatório que vive e se multiplic adentro dos vacúolos parasitóforos em macrófagos no hospedeiro vertebrado. Apesar dos vacúolos induzidos por diferentes espécies de Leishmania apresentarem semelhanças bioquímicas, esses compartimentos apresentam diferenças significativas nos seus tamanhos. Os vacúolos parasitóforos induzidos por Leishmania mexicana e Leishmania amazonensis apresentam grandes dimensões e contêm uma grande quantidade de amastigotas, enquanto que os induzidos por Leishmania major e Leishmania donovani são pequenos e com pouco espaço ao redor das amastigotas. Estudos recentes demonstraram que compartimentos induzidos por microrganismos intracelulares são capazes de interagir com a via autofágica e esta pode controlar ou promover o estabelecimento da infecção a depender da natureza do microrganismo. Até o momento, poucos estudos foram realizados para avaliar o papel da autofagia na biogênese e maturação dos vacúolos parasitóforos induzidos por Leishmania. Recentemente, foi demonstrado que em macrófagos de camundongos BALB/c...


Leishmania is an intracellular parasite that lives and multiplies within parasitophorous vacuoles in macrophages in the vertebrate host. Despite the fact that vacuoles induced by different species of Leishmania present biochemical similarities, these compartments have significant differences in their sizes and composition. The parasitophorous vacuoles induced by Leishmania mexicana and Leishmania amazonensis are large and contain a large number of amastigotes, while vacuoles induced by Leishmania major and Leishmania donovani are small and tight. Recent studies have demonstrated that depending on the type of intracellular microorganism, the induced compartments can interact with the autophagic pathway and control or promote the establishment of infection. To date, few studies have been conducted to evaluate the role autophagic process plays in the biogenesis and maturation of parasitophorous vacuoles induced by Leishmania. Recently, it has been demonstrated that in macrophages of BALB/c...


Asunto(s)
Ratones , Autofagia/inmunología , Leishmania/crecimiento & desarrollo , Leishmania/parasitología , Leishmania/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA