Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Br J Cancer ; 130(5): 808-818, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225422

RESUMEN

BACKGROUND: Dihydropyrimidine dehydrogenase (DPD) deficiency is the main known cause of life-threatening fluoropyrimidine (FP)-induced toxicities. We conducted a meta-analysis on individual patient data to assess the contribution of deleterious DPYD variants *2A/D949V/*13/HapB3 (recommended by EMA) and clinical factors, for predicting G4-5 toxicity. METHODS: Study eligibility criteria included recruitment of Caucasian patients without DPD-based FP-dose adjustment. Main endpoint was 12-week haematological or digestive G4-5 toxicity. The value of DPYD variants *2A/p.D949V/*13 merged, HapB3, and MIR27A rs895819 was evaluated using multivariable logistic models (AUC). RESULTS: Among 25 eligible studies, complete clinical variables and primary endpoint were available in 15 studies (8733 patients). Twelve-week G4-5 toxicity prevalence was 7.3% (641 events). The clinical model included age, sex, body mass index, schedule of FP-administration, concomitant anticancer drugs. Adding *2A/p.D949V/*13 variants (at least one allele, prevalence 2.2%, OR 9.5 [95%CI 6.7-13.5]) significantly improved the model (p < 0.0001). The addition of HapB3 (prevalence 4.0%, 98.6% heterozygous), in spite of significant association with toxicity (OR 1.8 [95%CI 1.2-2.7]), did not improve the model. MIR27A rs895819 was not associated with toxicity, irrespective of DPYD variants. CONCLUSIONS: FUSAFE meta-analysis highlights the major relevance of DPYD *2A/p.D949V/*13 combined with clinical variables to identify patients at risk of very severe FP-related toxicity.


Asunto(s)
Antineoplásicos , Deficiencia de Dihidropirimidina Deshidrogenasa , Humanos , Fluorouracilo/efectos adversos , Dihidrouracilo Deshidrogenasa (NADP)/genética , Heterocigoto , Genotipo , Capecitabina/efectos adversos
2.
Elife ; 132024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686795

RESUMEN

Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome-edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.


Asunto(s)
Dihidrouracilo Deshidrogenasa (NADP) , Elementos de Facilitación Genéticos , Epigénesis Genética , Fluorouracilo , Humanos , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Dihidrouracilo Deshidrogenasa (NADP)/genética , Dihidrouracilo Deshidrogenasa (NADP)/metabolismo , Fluorouracilo/farmacología , Fluorouracilo/metabolismo , Mutación de Línea Germinal
3.
J Natl Cancer Cent ; 1(1): 15-22, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39036786

RESUMEN

The long-term effectiveness of targeted cancer therapies is limited by the development of resistance. Although epigenetic reprogramming has been implicated in resistance, the mechanisms remain elusive. Herein, we demonstrate that increased chromatin accessibility is involved in adaptive BRAF inhibitor (BRAFi)-resistance in melanoma cells. We observed loss of chromatin assembly factor 1 (CAF-1) and its related histone H3 lysine 9 trimethylation (H3K9me3) with adaptive BRAFi resistance. We further showed that depletion of CAF-1 provides chromatin plasticity for effective reprogramming by AP1 components to promote BRAFi resistance. Our data suggest that therapeutic approaches to restore H3K9me3 levels may compensate for the loss of CAF-1 and, in turn, suppress resistance to BRAF inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA