Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Evol ; 40(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37036379

RESUMEN

Low complexity sequences (LCRs) are well known within coding as well as non-coding sequences. A low complexity region within a protein must be encoded by the underlying DNA sequence. Here, we examine the relationship between the entropy of the protein sequence and that of the DNA sequence which encodes it. We show that they are poorly correlated whether starting with a low complexity region within the protein and comparing it to the corresponding sequence in the DNA or by finding a low complexity region within coding DNA and comparing it to the corresponding sequence in the protein. We show this is the case within the proteomes of five model organisms: Homo sapiens, Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, and Arabidopsis thaliana. We also report a significant bias against mononucleic codons in LCR encoding sequences. By comparison with simulated proteomes, we show that highly repetitive LCRs may be explained by neutral, slippage-based evolution, but compositionally biased LCRs with cryptic repeats are not. We demonstrate that other biological biases and forces must be acting to create and maintain these LCRs. Uncovering these forces will improve our understanding of protein LCR evolution.


Asunto(s)
Drosophila melanogaster , Proteoma , Animales , Drosophila melanogaster/genética , ADN , Secuencia de Aminoácidos , Saccharomyces cerevisiae/genética
2.
J Mol Evol ; 92(2): 153-168, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485789

RESUMEN

Protein Protein low complexity regions (LCRs) are compositionally biased amino acid sequences, many of which have significant evolutionary impacts on the proteins which contain them. They are mutationally unstable experiencing higher rates of indels and substitutions than higher complexity regions. LCRs also impact the expression of their proteins, likely through multiple effects along the path from gene transcription, through translation, and eventual protein degradation. It has been observed that proteins which contain LCRs are associated with elevated transcript abundance (TAb), despite having lower protein abundance. We have gathered and integrated human data to investigate the co-evolution of TAb and LCRs through ancestral reconstructions and model inference using an approximate Bayesian calculation based method. We observe that on short evolutionary timescales TAb evolution is significantly impacted by changes in LCR length, with insertions driving TAb down. But in contrast, the observed data is best explained by indel rates in LCRs which are unaffected by shifts in TAb. Our work demonstrates a coupling between LCR and TAb evolution, and the utility of incorporating multiple responses into evolutionary analyses.


Asunto(s)
Evolución Molecular , Proteínas , Humanos , Teorema de Bayes , Proteínas/genética , Proteínas/química , Secuencia de Aminoácidos , Dominios Proteicos
3.
Mol Biol Evol ; 39(5)2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35482425

RESUMEN

Low Complexity Regions (LCRs) are present in a surprisingly large number of eukaryotic proteins. These highly repetitive and compositionally biased sequences are often structurally disordered, bind promiscuously, and evolve rapidly. Frequently studied in terms of evolutionary dynamics, little is known about how LCRs affect the expression of the proteins which contain them. It would be expected that rapidly evolving LCRs are unlikely to be tolerated in strongly conserved, highly abundant proteins, leading to lower overall abundance in proteins which contain LCRs. To test this hypothesis and examine the associations of protein abundance and transcript abundance with the presence of LCRs, we have integrated high-throughput data from across mammals. We have found that LCRs are indeed associated with reduced protein abundance, but are also associated with elevated transcript abundance. These associations are qualitatively consistent across 12 human tissues and nine mammalian species. The differential impacts of LCRs on abundance at the protein and transcript level are not explained by differences in either protein degradation rates or the inefficiency of translation for LCR containing proteins. We suggest that rapidly evolving LCRs are a source of selective pressure on the regulatory mechanisms which maintain steady-state protein abundance levels.


Asunto(s)
Evolución Molecular , Proteínas , Animales , Humanos , Mamíferos/genética , Dominios Proteicos , Proteínas/genética
5.
Cell Rep Methods ; 1(6): 100069, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-35474894

RESUMEN

The compounding challenges of low signal, high background, and uncertain targets plague many metagenomic sequencing efforts. One solution has been DNA capture, wherein probes are designed to hybridize with target sequences, enriching them in relation to their background. However, balancing probe depth with breadth of capture is challenging for diverse targets. To find this balance, we have developed the HUBDesign pipeline, which makes use of sequence homology to design probes at multiple taxonomic levels. This creates an efficient probe set capable of simultaneously and specifically capturing known and related sequences. We validated HUBDesign by generating probe sets targeting the breadth of coronavirus diversity, as well as a suite of bacterial pathogens often underlying sepsis. In separate experiments demonstrating significant, simultaneous enrichment, we captured SARS-CoV-2 and HCoV-NL63 in a human RNA background and seven bacterial strains in human blood. HUBDesign (https://github.com/zacherydickson/HUBDesign) has broad applicability wherever there are multiple organisms of interest.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Metagenoma , Bacterias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA