Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mol Metab ; 85: 101931, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38796310

RESUMEN

OBJECTIVE: Simultaneous activation of ß2- and ß3-adrenoceptors (ARs) improves whole-body metabolism via beneficial effects in skeletal muscle and brown adipose tissue (BAT). Nevertheless, high-efficacy agonists simultaneously targeting these receptors whilst limiting activation of ß1-ARs - and thus inducing cardiovascular complications - are currently non-existent. Therefore, we here developed and evaluated the therapeutic potential of a novel ß2-and ß3-AR, named ATR-127, for the treatment of obesity and its associated metabolic perturbations in preclinical models. METHODS: In the developmental phase, we assessed the impact of ATR-127's on cAMP accumulation in relation to the non-selective ß-AR agonist isoprenaline across various rodent ß-AR subtypes, including neonatal rat cardiomyocytes. Following these experiments, L6 muscle cells were stimulated with ATR-127 to assess the impact on GLUT4-mediated glucose uptake and intramyocellular cAMP accumulation. Additionally, in vitro, and in vivo assessments are conducted to measure ATR-127's effects on BAT glucose uptake and thermogenesis. Finally, diet-induced obese mice were treated with 5 mg/kg ATR-127 for 21 days to investigate the effects on glucose homeostasis, body weight, fat mass, skeletal muscle glucose uptake, BAT thermogenesis and hepatic steatosis. RESULTS: Exposure of L6 muscle cells to ATR-127 robustly enhanced GLUT4-mediated glucose uptake despite low intramyocellular cAMP accumulation. Similarly, ATR-127 markedly increased BAT glucose uptake and thermogenesis both in vitro and in vivo. Prolonged treatment of diet-induced obese mice with ATR-127 dramatically improved glucose homeostasis, an effect accompanied by decreases in body weight and fat mass. These effects were paralleled by an enhanced skeletal muscle glucose uptake, BAT thermogenesis, and improvements in hepatic steatosis. CONCLUSIONS: Our results demonstrate that ATR-127 is a highly effective, novel ß2- and ß3-ARs agonist holding great therapeutic promise for the treatment of obesity and its comorbidities, whilst potentially limiting cardiovascular complications. As such, the therapeutic effects of ATR-127 should be investigated in more detail in clinical studies.


Asunto(s)
Tejido Adiposo Pardo , Ratones Endogámicos C57BL , Músculo Esquelético , Animales , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Masculino , Ratas , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Hígado Graso/metabolismo , Hígado Graso/tratamiento farmacológico , Termogénesis/efectos de los fármacos , Agonistas Adrenérgicos/farmacología
2.
iScience ; 25(9): 104882, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36060054

RESUMEN

In this study, we synthesized and evaluated new photoswitchable ligands for the beta-adrenergic receptors ß1-AR and ß2-AR, applying an azologization strategy to the first-generation beta-blocker propranolol. The resulting compounds (Opto-prop-1, -2, -3) have good photochemical properties with high levels of light-induced trans-cis isomerization (>94%) and good thermal stability (t 1/2 > 10 days) of the resulting cis-isomer in an aqueous buffer. Upon illumination with 360-nm light to PSS cis , large differences in binding affinities were observed for photoswitchable compounds at ß1-AR as well as ß2-AR. Notably, Opto-prop-2 (VUF17062) showed one of the largest optical shifts in binding affinities at the ß2-AR (587-fold, cis-active), as recorded so far for photoswitches of G protein-coupled receptors. We finally show the broad utility of Opto-prop-2 as a light-dependent competitive antagonist of the ß2-AR as shown with a conformational ß2-AR sensor, by the recruitment of downstream effector proteins and functional modulation of isolated adult rat cardiomyocytes.

3.
Methods Mol Biol ; 2268: 249-274, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34085274

RESUMEN

An understanding of the kinetic contributions to G protein-coupled receptor pharmacology and signaling is increasingly important in compound profiling. Nonequilibrium conditions are commonly present in vivo, for example, as the drug competes with dynamic changes in hormone or neurotransmitter concentration for the receptor. Under such conditions individual binding kinetic properties of the ligands can influence duration of action, local ligand concentration, and functional properties such as the degree of insurmountable inhibition. Mapping the kinetic patterns of GPCR signaling events elicited by agonists, rather than a peak response at a single timepoint, is often key to predicting their functional impact. This is also a path to a better understanding of the origins of ligand bias, and whether such ligands demonstrate their effects through selection of distinct GPCR conformations, or via their kinetic properties. Recent developments in complementation approaches, based on a small bright shrimp luciferase Nanoluc, provide a new route to kinetic analysis of GPCR signaling in living cells that is amenable to the throughput required for compound profiling. In the NanoBiT luciferase complementation system, GPCRs and effector proteins are tagged with Nanoluc fragments optimized for their low interacting affinity and stability. The interactions brought about by GPCR recruitment of the effector are reproduced by a rapid and reversible increase in NanoBiT luminescence, in the presence of its substrate furimazine. Here we discuss the methods for optimizing and validating the GPCR NanoBiT assays, and protocols for their application to study endpoint and kinetic aspects of agonist and antagonist pharmacology. We also describe how timecourse families of agonist concentration response curves, derived from a single NanoBiT assay experiment, can be used to evaluate the kinetic components in operational model derived parameters of ligand bias.


Asunto(s)
Bioensayo/métodos , Luciferasas/metabolismo , Imagen Molecular/métodos , Receptores Acoplados a Proteínas G/metabolismo , Análisis de la Célula Individual/métodos , Células HEK293 , Humanos , Cinética , Ligandos , Luminiscencia , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA