Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
EMBO J ; 38(22): e101681, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31583744

RESUMEN

Epigenetic modifications operate in concert to maintain cell identity, yet how these interconnected networks suppress alternative cell fates remains unknown. Here, we uncover a link between the removal of repressive histone H3K9 methylation and DNA methylation during the reprogramming of somatic cells to pluripotency. The H3K9me2 demethylase, Kdm3b, transcriptionally controls DNA hydroxymethylase Tet1 expression. Unexpectedly, in the absence of Kdm3b, loci that must be DNA demethylated are trapped in an intermediate hydroxymethylated (5hmC) state and do not resolve to unmethylated cytosine. Ectopic 5hmC trapping precludes the chromatin association of master pluripotency factor, POU5F1, and pluripotent gene activation. Increased Tet1 expression is important for the later intermediates of the reprogramming process. Taken together, coordinated removal of distinct chromatin modifications appears to be an important mechanism for altering cell identity.


Asunto(s)
Linaje de la Célula/genética , Reprogramación Celular , Cromatina/genética , Metilación de ADN , Epigénesis Genética , Histonas/genética , Células Madre Pluripotentes Inducidas/citología , Animales , Células Cultivadas , Proteínas de Unión al ADN/fisiología , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Histona Demetilasas con Dominio de Jumonji/fisiología , Ratones , Ratones Noqueados , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Proto-Oncogénicas/fisiología
2.
J Biol Chem ; 294(14): 5408-5419, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30181211

RESUMEN

α-Ketoglutarate is an important metabolic intermediate that acts as a cofactor for several chromatin-modifying enzymes, including histone demethylases and the Tet family of enzymes that are involved in DNA demethylation. In this review, we focus on the function and genomic localization of these α-ketoglutarate-dependent enzymes in the maintenance of pluripotency during cellular reprogramming to induced pluripotent stem cells and in disruption of pluripotency during in vitro differentiation. The enzymatic function of many of these α-ketoglutarate-dependent proteins is required for pluripotency acquisition and maintenance. A better understanding of their specific function will be essential in furthering our knowledge of pluripotency.


Asunto(s)
Reprogramación Celular , Metilación de ADN , Histona Demetilasas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Animales , Humanos
3.
Chirality ; 28(9): 633-41, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27479933

RESUMEN

Enantiomers of chiral molecules commonly exhibit differing pharmacokinetics and toxicities, which can introduce significant uncertainty when evaluating biological and environmental fates and potential risks to humans and the environment. However, racemization (the irreversible transformation of one enantiomer into the racemic mixture) and enantiomerization (the reversible conversion of one enantiomer into the other) are poorly understood. To better understand these processes, we investigated the chiral fungicide, triadimefon, which undergoes racemization in soils, water, and organic solvents. Nuclear magnetic resonance (NMR) and gas chromatography / mass spectrometry (GC/MS) techniques were used to measure the rates of enantiomerization and racemization, deuterium isotope effects, and activation energies for triadimefon in H2 O and D2 O. From these results we were able to determine that: 1) the alpha-carbonyl carbon of triadimefon is the reaction site; 2) cleavage of the C-H (C-D) bond is the rate-determining step; 3) the reaction is base-catalyzed; and 4) the reaction likely involves a symmetrical intermediate. The B3LYP/6-311 + G** level of theory was used to compute optimized geometries, harmonic vibrational frequencies, nature population analysis, and intrinsic reaction coordinates for triadimefon in water and three racemization pathways were hypothesized. This work provides an initial step in developing predictive, structure-based models that are needed to identify compounds of concern that may undergo racemization. Chirality 28:633-641, 2016. © 2016 Wiley Periodicals, Inc.

4.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37398291

RESUMEN

Histone modifying enzymes play a central role in maintaining cell identity by establishing a conducive chromatin environment for lineage specific transcription factor activity. Pluripotent embryonic stem cell (ESC) identity is characterized by a lower abundance of gene repression associated histone modifications that enables rapid response to differentiation cues. The KDM3 family of histone demethylases removes the repressive histone H3 lysine 9 dimethylation (H3K9me2). Here we uncover a surprising role for the KDM3 proteins in the maintenance of the pluripotent state through post-transcriptional regulation. We find that KDM3A and KDM3B interact with RNA processing factors such as EFTUD2 and PRMT5. Acute selective degradation of the endogenous KDM3A and KDM3B proteins resulted in altered splicing independent of H3K9me2 status or catalytic activity. These splicing changes partially resemble the splicing pattern of the more blastocyst-like ground state of pluripotency and occurred in important chromatin and transcription factors such as Dnmt3b, Tbx3 and Tcf12. Our findings reveal non-canonical roles of histone demethylating enzymes in splicing to regulate cell identity.

5.
Toxicol Sci ; 155(1): 270-282, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28031414

RESUMEN

High body burdens of polybrominated diphenyl ethers (PBDEs) in infants and young children have led to increased concern over their potential impact on human development. PBDE exposure can alter the expression of genes involved in thyroid homeostasis, including those of ATP-binding cassette (ABC) transporters, which mediate cellular xenobiotic efflux. However, little information exists on how PBDEs interact with ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). The purpose of this study was to evaluate the interactions of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and its hydroxylated metabolite 6-OH-BDE-47 with P-gp and BCRP, using human MDR1- and BCRP-expressing membrane vesicles and stably transfected NIH-3T3-MDR1 and MDCK-BCRP cells. In P-gp membranes, BDE-47 did not affect P-gp activity; however, 6-OH-BDE-47 inhibited P-gp activity at low µM concentrations (IC50 = 11.7 µM). In BCRP membranes, BDE-47 inhibited BCRP activity; however, 6-OH-BDE-47 was a stronger inhibitor [IC50 = 45.9 µM (BDE-47) vs. IC50 = 9.4 µM (6-OH-BDE-47)]. Intracellular concentrations of known P-gp and BCRP substrates [(3H)-paclitaxel and (3H)-prazosin, respectively] were significantly higher (indicating less efflux) in NIH-3T3-MDR1 and MDCK-BCRP cells in the presence of 6-OH-BDE-47, but not BDE-47. Collectively, our results indicate that the BDE-47 metabolite 6-OH-BDE-47 is an inhibitor of both P-gp and BCRP efflux activity. These findings suggest that some effects previously attributed to BDE-47 in biological systems may actually be due to 6-OH-BDE-47. Considerations for human exposure are discussed.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Exposición a Riesgos Ambientales , Proteínas de Neoplasias/antagonistas & inhibidores , Bifenilos Polibrominados/toxicidad , Western Blotting , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Humanos , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA