Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 113(1): 40-5, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26699476

RESUMEN

Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥ 50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the "zero curtain" period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y(-1), ∼ 25% of global emissions from extratropical wetlands, or ∼ 6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.


Asunto(s)
Frío , Metano/análisis , Tundra , Regiones Árticas , Monitoreo del Ambiente , Modelos Teóricos , Estaciones del Año , Suelo , Humedales
2.
Proc Natl Acad Sci U S A ; 111(47): 16694-9, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25385648

RESUMEN

We determined methane (CH4) emissions from Alaska using airborne measurements from the Carbon Arctic Reservoirs Vulnerability Experiment (CARVE). Atmospheric sampling was conducted between May and September 2012 and analyzed using a customized version of the polar weather research and forecast model linked to a Lagrangian particle dispersion model (stochastic time-inverted Lagrangian transport model). We estimated growing season CH4 fluxes of 8 ± 2 mg CH4⋅m(-2)⋅d(-1) averaged over all of Alaska, corresponding to fluxes from wetlands of 56(-13)(+22) mg CH4⋅m(-2)⋅d(-1) if we assumed that wetlands are the only source from the land surface (all uncertainties are 95% confidence intervals from a bootstrapping analysis). Fluxes roughly doubled from May to July, then decreased gradually in August and September. Integrated emissions totaled 2.1 ± 0.5 Tg CH4 for Alaska from May to September 2012, close to the average (2.3; a range of 0.7 to 6 Tg CH4) predicted by various land surface models and inversion analyses for the growing season. Methane emissions from boreal Alaska were larger than from the North Slope; the monthly regional flux estimates showed no evidence of enhanced emissions during early spring or late fall, although these bursts may be more localized in time and space than can be detected by our analysis. These results provide an important baseline to which future studies can be compared.

3.
Global Biogeochem Cycles ; 30(10): 1441-1453, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28066129

RESUMEN

Methane (CH4) fluxes from Alaska and other arctic regions may be sensitive to thawing permafrost and future climate change, but estimates of both current and future fluxes from the region are uncertain. This study estimates CH4 fluxes across Alaska for 2012-2014 using aircraft observations from the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) and a geostatistical inverse model (GIM). We find that a simple flux model based on a daily soil temperature map and a static map of wetland extent reproduces the atmospheric CH4 observations at the state-wide, multi-year scale more effectively than global-scale, state-of-the-art process-based models. This result points to a simple and effective way of representing CH4 flux patterns across Alaska. It further suggests that contemporary process-based models can improve their representation of key processes that control fluxes at regional scales, and that more complex processes included in these models cannot be evaluated given the information content of available atmospheric CH4 observations. In addition, we find that CH4 emissions from the North Slope of Alaska account for 24% of the total statewide flux of 1.74 ± 0.44 Tg CH4 (for May-Oct.). Contemporary global-scale process models only attribute an average of 3% of the total flux to this region. This mismatch occurs for two reasons: process models likely underestimate wetland area in regions without visible surface water, and these models prematurely shut down CH4 fluxes at soil temperatures near 0°C. As a consequence, wetlands covered by vegetation and wetlands with persistently cold soils could be larger contributors to natural CH4 fluxes than in process estimates. Lastly, we find that the seasonality of CH4 fluxes varied during 2012-2014, but that total emissions did not differ significantly among years, despite substantial differences in soil temperature and precipitation; year-to-year variability in these environmental conditions did not affect obvious changes in total CH4 fluxes from the state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA