Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36834660

RESUMEN

During the past decade, researchers have investigated the molecular mechanisms of breast cancer initiation and progression, especially triple-negative breast cancer (TNBC), in order to identify specific biomarkers that could serve as feasible targets for innovative therapeutic strategies development. TNBC is characterized by a dynamic and aggressive nature, due to the absence of estrogen, progesterone and human epidermal growth factor 2 receptors. TNBC progression is associated with the dysregulation of nucleotide-binding oligomerization domain-like receptor and pyrin domain-containing protein 3 (NLRP3) inflammasome, followed by the release of pro-inflammatory cytokines and caspase-1 dependent cell death, termed pyroptosis. The heterogeneity of the breast tumor microenvironment triggers the interest of non-coding RNAs' involvement in NLRP3 inflammasome assembly, TNBC progression and metastasis. Non-coding RNAs are paramount regulators of carcinogenesis and inflammasome pathways, which could help in the development of efficient treatments. This review aims to highlight the contribution of non-coding RNAs that support inflammasome activation and TNBC progression, pointing up their potential for clinical applications as biomarkers for diagnosis and therapy.


Asunto(s)
MicroARNs , Neoplasias de la Mama Triple Negativas , Humanos , MicroARNs/uso terapéutico , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Piroptosis , Microambiente Tumoral
2.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768351

RESUMEN

Magnetic materials and magnetic stimulation have gained increasing attention in tissue engineering (TE), particularly for bone and nervous tissue reconstruction. Magnetism is utilized to modulate the cell response to environmental factors and lineage specifications, which involve complex mechanisms of action. Magnetic fields and nanoparticles (MNPs) may trigger focal adhesion changes, which are further translated into the reorganization of the cytoskeleton architecture and have an impact on nuclear morphology and positioning through the activation of mechanotransduction pathways. Mechanical stress induced by magnetic stimuli translates into an elongation of cytoskeleton fibers, the activation of linker in the nucleoskeleton and cytoskeleton (LINC) complex, and nuclear envelope deformation, and finally leads to the mechanical regulation of chromatin conformational changes. As such, the internalization of MNPs with further magnetic stimulation promotes the evolution of stem cells and neurogenic differentiation, triggering significant changes in global gene expression that are mediated by histone deacetylases (e.g., HDAC 5/11), and the upregulation of noncoding RNAs (e.g., miR-106b~25). Additionally, exposure to a magnetic environment had a positive influence on neurodifferentiation through the modulation of calcium channels' activity and cyclic AMP response element-binding protein (CREB) phosphorylation. This review presents an updated and integrated perspective on the molecular mechanisms that govern the cellular response to magnetic cues, with a special focus on neurogenic differentiation and the possible utility of nervous TE, as well as the limitations of using magnetism for these applications.


Asunto(s)
Citoesqueleto , Fenómenos Magnéticos , Mecanotransducción Celular , Células Madre , Diferenciación Celular , Citoesqueleto/metabolismo , Mecanotransducción Celular/fisiología , Células Madre/metabolismo
3.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37047539

RESUMEN

Cutaneous melanoma is one of the most aggressive types of cancer and often proves fatal in metastatic stages. Few treatment options are available, and its global incidence is quickly increasing. In order to gain an improved understanding of the molecular features regarding melanoma progression, we have compared gene and small non-coding RNA expression profiles from cell lines derived from primary melanoma (MelJuSo), lymph node metastasis (MNT-1) and brain metastasis (VMM1), representing distinct stages of malignant progression. Our preliminary results highlighted the aberrant regulation of molecular markers involved in several processes that aid melanoma progression and metastasis development, including extracellular matrix remodeling, migratory potential and angiogenesis. Moreover, bioinformatic analysis revealed potential targets of the microRNAs of interest. Confocal microscopy and immunohistochemistry analysis were used for validation at the protein level. Exploring the molecular landscape of melanoma may contribute to the achievement of future efficient targeted therapy, as well as better prevention, diagnosis and clinical management.


Asunto(s)
Melanoma , MicroARNs , Neoplasias Cutáneas , Humanos , Melanoma/patología , Neoplasias Cutáneas/patología , Perfilación de la Expresión Génica/métodos , MicroARNs/genética , Biomarcadores , Metástasis de la Neoplasia , Melanoma Cutáneo Maligno
4.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958812

RESUMEN

Resident macrophages from dorsal root ganglia are important for the development of traumatic-induced neuropathic pain. In the first 5-7 days after a traumatic sciatic nerve injury (i.e., spinal nerve ligation (SNL), spared nerve injury (SNI), sciatic nerve transection or sciatic nerve ligation and transection), Ionized binding adapter protein 1 (Iba1) (+) resident macrophages cluster around dorsal root ganglia neurons, possibly contributing to nerve injury-induced hypersensitivity. Since infiltrating macrophages gradually recruited to the lesion site peak at about 7 days, the first few days post-lesion offer a window of opportunity when the contribution of Iba1 (+) resident macrophages to neuropathic pain pathogenesis could be investigated. Iba1 is an actin cross-linking cytoskeleton protein, specifically located only in macrophages and microglia. In this study, we explored the contribution of rat Iba1 (+) macrophages in SNL-induced neuropathic pain by using intra-ganglionic injections of naked Iba1-siRNA, delivered at the time the lesion occurred. The results show that 5 days after Iba1 silencing, Iba1 (+) resident macrophages are switched from an M1 (pro-inflammatory) phenotype to an M2 (anti-inflammatory) phenotype, which was confirmed by a significant decrease of M1 markers (CD32 and CD86), a significant increase of M2 markers (CD163 and Arginase-1), a reduced secretion of pro-inflammatory cytokines (IL-6, TNF-α and IL-1ß) and an increased release of pro-regenerative factors (BDNF, NGF and NT-3) which initiated the regrowth of adult DRG neurites and reduced SNL-induced neuropathic pain. Our data show for the first time, that it is possible to induce macrophages towards an anti-inflammatory phenotype by interacting with their cytoskeleton.


Asunto(s)
Neuralgia , Animales , Ratas , Analgésicos/farmacología , Antiinflamatorios/farmacología , Ganglios Espinales/metabolismo , Hiperalgesia/metabolismo , Macrófagos/metabolismo , Neuralgia/genética , Neuralgia/terapia , Nervios Espinales/metabolismo
5.
Mar Drugs ; 20(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36354993

RESUMEN

Fabrication of three-dimensional (3D) scaffolds using natural biomaterials introduces valuable opportunities in bone tissue reconstruction and regeneration. The current study aimed at the development of paste-like 3D printing inks with an extracellular matrix-inspired formulation based on marine materials: sodium alginate (SA), cuttlebone (CB), and fish gelatin (FG). Macroporous scaffolds with microporous biocomposite filaments were obtained by 3D printing combined with post-printing crosslinking. CB fragments were used for their potential to stimulate biomineralization. Alginate enhanced CB embedding within the polymer matrix as confirmed by scanning electron microscopy (ESEM) and micro-computer tomography (micro-CT) and improved the deformation under controlled compression as revealed by micro-CT. SA addition resulted in a modulation of the bulk and surface mechanical behavior, and lead to more elongated cell morphology as imaged by confocal microscopy and ESEM after the adhesion of MC3T3-E1 preosteoblasts at 48 h. Formation of a new mineral phase was detected on the scaffold's surface after cell cultures. All the results were correlated with the scaffolds' compositions. Overall, the study reveals the potential of the marine materials-containing inks to deliver 3D scaffolds with potential for bone regeneration applications.


Asunto(s)
Alginatos , Gelatina , Animales , Gelatina/farmacología , Alginatos/farmacología , Tinta , Andamios del Tejido , Ingeniería de Tejidos/métodos , Impresión Tridimensional , Regeneración Ósea
6.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36613995

RESUMEN

The field of tissue engineering is constantly evolving due to the fabrication of novel platforms that promise to stimulate tissue regeneration in the scenario of accidents. Here, we describe the fabrication of fibrous nanostructured substrates based on fish gelatin (FG) and enriched with graphene oxide (GO) and magnetic nanoparticles (MNPs) and demonstrate its biological properties in terms of cell viability and proliferation, cell adhesion, and differentiation. For this purpose, electrospun fibers were fabricated using aqueous precursors containing either only GO and only MNP nanospecies, or both of them within a fish gelatin solution. The obtained materials were investigated in terms of morphology, aqueous media affinity, tensile elasticity, and structural characteristics. The biological evaluation was assessed against adipose-derived stem cells by MTT, LDH, Live/Dead assay, cytoskeleton investigation, and neuronal trans-differentiation. The results indicate an overall good interaction and show that these materials offer a biofriendly environment. A higher concentration of both nanospecies types induced some toxic effects, thus 0.5% GO, MNPs, and GO/MNPs turned out to be the most suitable option for biological testing. Moreover, a successful neuronal differentiation has been shown on these materials, where cells presented a typical neuronal phenotype. This study demonstrates the potential of this scaffold to be further used in tissue engineering applications.


Asunto(s)
Grafito , Nanopartículas de Magnetita , Animales , Humanos , Gelatina/química , Ingeniería de Tejidos , Grafito/farmacología , Grafito/química , Diferenciación Celular , Células Madre , Proliferación Celular , Andamios del Tejido/química
7.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35008918

RESUMEN

Over the years, natural-based scaffolds have presented impressive results for bone tissue engineering (BTE) application. Further, outstanding interactions have been observed during the interaction of graphene oxide (GO)-reinforced biomaterials with both specific cell cultures and injured bone during in vivo experimental conditions. This research hereby addresses the potential of fish gelatin/chitosan (GCs) hybrids reinforced with GO to support in vitro osteogenic differentiation and, further, to investigate its behavior when implanted ectopically. Standard GCs formulation was referenced against genipin (Gp) crosslinked blend and 0.5 wt.% additivated GO composite (GCsGp/GO 0.5 wt.%). Pre-osteoblasts were put in contact with these composites and induced to differentiate in vitro towards mature osteoblasts for 28 days. Specific bone makers were investigated by qPCR and immunolabeling. Next, CD1 mice models were used to assess de novo osteogenic potential by ectopic implantation in the subcutaneous dorsum pocket of the animals. After 4 weeks, alkaline phosphate (ALP) and calcium deposits together with collagen synthesis were investigated by biochemical analysis and histology, respectively. Further, ex vivo materials were studied after surgery regarding biomineralization and morphological changes by means of qualitative and quantitative methods. Furthermore, X-ray diffraction and Fourier-transform infrared spectroscopy underlined the newly fashioned material structuration by virtue of mineralized extracellular matrix. Specific bone markers determination stressed the osteogenic phenotype of the cells populating the material in vitro and successfully differentiated towards mature bone cells. In vivo results of specific histological staining assays highlighted collagen formation and calcium deposits, which were further validated by micro-CT. It was observed that the addition of 0.5 wt.% GO had an overall significant positive effect on both in vitro differentiation and in vivo bone cell recruitment in the subcutaneous region. These data support the GO bioactivity in osteogenesis mechanisms as being self-sufficient to elevate osteoblast differentiation and bone formation in ectopic sites while lacking the most common osteoinductive agents.


Asunto(s)
Biopolímeros/farmacología , Diferenciación Celular , Grafito/farmacología , Osteogénesis , Células 3T3 , Fosfatasa Alcalina/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Osteogénesis/efectos de los fármacos , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Tejido Subcutáneo/efectos de los fármacos , Andamios del Tejido/química , Difracción de Rayos X , Microtomografía por Rayos X
8.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35163761

RESUMEN

The main objective was to produce 3D printable hydrogels based on GelMA and hydroxyapatite doped with cerium ions with potential application in bone regeneration. The first part of the study regards the substitution of Ca2+ ions from hydroxyapatite structure with cerium ions (Ca10-xCex(PO4)6(OH)2, xCe = 0.1, 0.3, 0.5). The second part followed the selection of the optimal concentration of HAp doped, which will ensure GelMA-based scaffolds with good biocompatibility, viability and cell proliferation. The third part aimed to select the optimal concentrations of GelMA for the 3D printing process (20%, 30% and 35%). In vitro biological assessment presented the highest level of cell viability and proliferation potency of GelMA-HC5 composites, along with a low cytotoxic potential, highlighting the beneficial effects of cerium on cell growth, also supported by Live/Dead results. According to the 3D printing experiments, the 30% GelMA enriched with HC5 was able to generate 3D scaffolds with high structural integrity and homogeneity, showing the highest suitability for the 3D printing process. The osteogenic differentiation experiments confirmed the ability of 30% GelMA-3% HC5 scaffold to support and efficiently maintain the osteogenesis process. Based on the results, 30% GelMA-3% HC5 3D printed scaffolds could be considered as biomaterials with suitable characteristics for application in bone tissue engineering.


Asunto(s)
Materiales Biocompatibles/farmacología , Cerio/química , Gelatina/química , Hidrogeles/farmacología , Hidroxiapatitas/química , Metacrilatos/química , Osteoblastos/citología , Animales , Materiales Biocompatibles/química , Regeneración Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Hidrogeles/química , Ratones , Osteogénesis , Polvos , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido/química
9.
RNA Biol ; 18(sup1): 51-60, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34582322

RESUMEN

Considered to be a field that is continuously growing, epitranscriptomics analyzes the modifications that occur in RNA transcripts and their downstream effects. As epigenetic modifications found in DNA and histones exhibit specific roles on various biological processes, also epitranscriptomic marks control gene expression patterns that are crucial for proper cell proliferation, differentiation and tissue development. Thus, various epitranscriptomic signatures have been identified to play specific roles during stem cell differentiation towards the neuronal and glial lineages, axonal guidance, synaptic plasticity, thus leading to the development of the mature brain tissue. Here we describe in-depth molecular mechanism underlying the most important RNA modifications with emerging roles in the nervous system.


Asunto(s)
Diferenciación Celular , Epigénesis Genética , Epigenómica/métodos , Neuronas/patología , Procesamiento Postranscripcional del ARN , Células Madre/citología , Transcriptoma , Animales , Humanos , Neuronas/metabolismo , Células Madre/metabolismo
10.
Adv Exp Med Biol ; 1312: 139-163, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32986128

RESUMEN

Human adipose-derived stem cells (hASCs) represent a great resource for regenerative medicine based on their accessibility, self-renewal potential, low immunogenicity, high proliferative rate and potential to differentiate on multiple lineages. Their secretome is rich in chemokines, cytokines and protein growth factors that are actively involved in regeneration processes. In addition, part of this secretome are also the exosomes (hASC-exos), which display high content in proteins, messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). Due to their content, exosomes promote tissue regeneration by different mechanisms, either by activating or inhibiting several signaling pathways involved in wound healing, extracellular matrix remodeling, immunomodulation, angiogenesis, anti-apoptotic activity and cell migration, proliferation and differentiation. The use of hASC-exos may provide an improved alternative to standard therapies used in regenerative medicine, as a cell-free new approach with multiple possibilities to be modulated according to the patient needs. This review offers an updated overview on the functions and applications of hASC-exos in all areas of tissue regeneration, aiming to highlight to the reader the benefits of using hASCs in modern tissue engineering and regenerative medicine applications.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Adipocitos , Tejido Adiposo , Humanos , Células Madre
11.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34948088

RESUMEN

Chronic liver injuries lead to liver fibrosis and then to end-stage liver cirrhosis. Liver transplantation is often needed as a course of treatment for patients in critical conditions, but limitations associated with transplantation prompted the continuous search for alternative therapeutic strategies. Cell therapy with stem cells has emerged as an attractive option in order to stimulate tissue regeneration and liver repair. Transplanted mesenchymal stem cells (MSCs) could trans-differentiate into hepatocyte-like cells and, moreover, show anti-fibrotic and immunomodulatory effects. However, cell transplantation may lead to some uncontrolled side effects, risks associated with tumorigenesis, and cell rejection. MSCs' secretome includes a large number of soluble factors and extracellular vesicles (EVs), through which they exert their therapeutic role. This could represent a cell-free strategy, which is safer and more effective than MSC transplantation. In this review, we focus on cell therapies based on MSCs and how the MSCs' secretome impacts the mechanisms associated with liver diseases. Moreover, we discuss the important therapeutic role of EVs and how their properties could be further used in liver regeneration.


Asunto(s)
Cirrosis Hepática/terapia , Células Madre Mesenquimatosas/metabolismo , Secretoma , Vesículas Extracelulares , Humanos , Inmunomodulación , Regeneración Hepática , Cicatrización de Heridas
12.
Int J Mol Sci ; 22(4)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668543

RESUMEN

Chrysin (CHR) is a natural flavonoid with a wide range of pharmacological activities, including hepatoprotection, but poor water solubility. By including water-soluble hydroxypropyl (HPBCD) and randomly methylated (RAMEB) ß-cyclodextrin, we aimed to increase its biodisponibility and the effectiveness of the antifibrotic effects of chrysin at oral administration. Liver fibrosis in mice was induced in 7 weeks by CCl4 i.p. administration, and afterwards treated with 50 mg/kg of CHR-HPBCD, CHR-RAMEB, and free chrysin. CCl4 administration increased hepatic inflammation (which was augmented by the upregulation of nuclear factor kappa-light-chain enhancer of activated B cells (NF-kB), tumor necrosis factor (TNF)-α, and interleukin 6 (IL-6) and induced fibrosis, as determined using histopathology and electron microscopy. These results were also confirmed by the upregulation of Collagen I (Col I) and matrix metalloproteinase (MMP) expression, which led to extracellular fibrotic matrix proliferation. Moreover, the immunopositivity of alpha-smooth muscle actin (a-SMA) in the CCl4 group was evidence of hepatic stellate cell (HSC) activation. The main profibrotic pathway was activated, as confirmed by an increase in the transforming growth factor- ß1 (TGF-ß1) and Smad 2/3 expression, while Smad 7 expression was decreased. Treatment with CHR-HPBCD and CHR-RAMEB considerably reduced liver injury, attenuated inflammation, and decreased extracellular liver collagen deposits. CHR-RAMEB was determined to be the most active antifibrotic complex. We conclude that both nanocomplexes exert anti-inflammatory effects and antifibrotic effects in a considerably stronger manner than for free chrysin administration.


Asunto(s)
Flavonoides/farmacología , Cirrosis Hepática , MicroARNs/biosíntesis , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , beta-Ciclodextrinas/farmacología , Animales , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Masculino , Ratones , MicroARNs/genética , FN-kappa B/genética , Transducción de Señal/genética , Proteínas Smad/genética , Factor de Crecimiento Transformador beta1/genética
13.
Adv Exp Med Biol ; 1298: 23-41, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32514816

RESUMEN

Injuries to the nervous system cause serious problems among affected patients by preventing them from the possibility of living a normal life. As this tissue possesses a reduced capacity of self-regeneration currently, lots of different strategies are being developed in order to make the regeneration in the nervous system possible. Among them, tissue engineering and stem cell-based therapies are to date very exploded fields and tremendous progress has been made in this direction. As the two main components of the nervous system, react differently to injuries and behave different during disease, it is clear that two separate regeneration approaches have been taken into consideration during development of treatment. Special attention is constantly given to the potential of adipose-derived stem cells for this kind of application. Due to the fact that they present remarkable properties, they can easily be obtained and have demonstrated that are capable of engaging in neural and glial lineages, adipose-derived stem cells are promising tools for the field of nervous system regeneration. Moreover, new insights into epigenetic control and modifications during the differentiation of adipose-derived stem cells towards the neural liege could provide new methods to maximize the regeneration process. In this review, we summarize the current applications of adipose-derived stem cells for neural regeneration and discuss in-depth molecular patterns involved in the differentiation of adipose-derived stem cells in neuron-like cells and Schwann-like cells.


Asunto(s)
Adipocitos , Tejido Adiposo , Diferenciación Celular , Humanos , Regeneración Nerviosa , Trasplante de Células Madre
14.
Int J Mol Sci ; 21(22)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202771

RESUMEN

Extracellular vesicles (EVs) are membranous structures derived from the endosomal system or generated by plasma membrane shedding. Due to their composition of DNA, RNA, proteins, and lipids, EVs have garnered a lot of attention as an essential mechanism of cell-to-cell communication, with various implications in physiological and pathological processes. EVs are not only a highly heterogeneous population by means of size and biogenesis, but they are also a source of diverse, functionally rich biomolecules. Recent advances in high-throughput processing of biological samples have facilitated the development of databases comprised of characteristic genomic, transcriptomic, proteomic, metabolomic, and lipidomic profiles for EV cargo. Despite the in-depth approach used to map functional molecules in EV-mediated cellular cross-talk, few integrative methods have been applied to analyze the molecular interplay in these targeted delivery systems. New perspectives arise from the field of systems biology, where accounting for heterogeneity may lead to finding patterns in an apparently random pool of data. In this review, we map the biological and methodological causes of heterogeneity in EV multi-omics data and present current applications or possible statistical methods for integrating such data while keeping track of the current bottlenecks in the field.


Asunto(s)
Comunicación Celular , Micropartículas Derivadas de Células/metabolismo , Vesículas Extracelulares/metabolismo , Genómica , Biología de Sistemas , Animales , Humanos
15.
Int J Mol Sci ; 20(20)2019 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-31614903

RESUMEN

The main goal of bone tissue engineering (BTE) is to refine and repair major bone defects based on bioactive biomaterials with distinct properties that can induce and support bone tissue formation. Graphene and its derivatives, such as graphene oxide (GO), display optimal properties for BTE, being able to support cell growth and proliferation, cell attachment, and cytoskeleton development as well as the activation of osteogenesis and bone development pathways. Conversely, the presence of GO within a polymer matrix produces favorable changes to scaffold morphologies that facilitate cell attachment and migration i.e., more ordered morphologies, greater surface area, and higher total porosity. Therefore, there is a need to explore the potential of GO for tissue engineering applications and regenerative medicine. Here, we aim to promote one novel scaffold based on a natural compound of chitosan, improved with 3 wt.% GO, for BTE approaches, considering its good biocompatibility, remarkable 3D characteristics, and ability to support stem cell differentiation processes towards the bone lineage.


Asunto(s)
Huesos/citología , Quitosano/química , Grafito/química , Osteogénesis , Ingeniería de Tejidos/métodos , Andamios del Tejido , Células Madre Adultas/citología , Materiales Biocompatibles/química , Regeneración Ósea , Huesos/ultraestructura , Diferenciación Celular , Proliferación Celular , Humanos , Ensayo de Materiales , Conformación Molecular , Osteocitos/citología , Osteocitos/ultraestructura , Porosidad
16.
Int J Mol Sci ; 20(16)2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398874

RESUMEN

Carbon-based nanomaterials, such as graphene oxide (GO) or carbon nanotubes (CNTs) are currently used in various medical applications due to their positive influence on biocompatibility, adhesion, proliferation, and differentiation, as well as their contribution to modulating cell behavior in response to nanomaterial substrates. In this context, in this study, novel flexible membranes based on cellulose acetate (CA) enriched with CNT and GO in different percentages were tested for their versatility to be used as substrates for soft or hard tissue engineering (TE), namely, for their ability to support human adipose-derived stem cells (hASCs) adhesion during adipogenic or osteogenic differentiation. For this purpose, differentiation markers were assessed both at gene and protein levels, while histological staining was performed to show the evolution of the processes in response to CA-CNT-GO substrates. Micro-CT analysis indicated porous morphologies with open and interconnected voids. A slightly lower total porosity was obtained for the samples filled with the highest amount of GO and CNTs, but thicker walls, larger and more uniform pores were obtained, providing beneficial effects on cell behavior and increased mechanical stability. The addition of 1 wt% GO and CNT to the biocomposites enhanced hASCs adhesion and cytoskeleton formation. The evolution of both adipogenic and osteogenic differentiation processes was found to be augmented proportionally to the GO-CNT concentration. In conclusion, CA-CNT-GO biomaterials displayed good properties and versatility as platforms for cell differentiation with potential as future implantable materials in TE applications.


Asunto(s)
Materiales Biocompatibles/química , Grafito/química , Nanotubos de Carbono/química , Ingeniería de Tejidos , Andamios del Tejido/química , Biomarcadores , Adhesión Celular , Técnicas de Cultivo de Célula , Diferenciación Celular , Supervivencia Celular , Fenómenos Químicos , Humanos , Ensayo de Materiales , Osteogénesis , Porosidad , Microtomografía por Rayos X
17.
Polymers (Basel) ; 16(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38931977

RESUMEN

Skin tissue injuries necessitate particular care due to associated complex healing mechanisms. Current investigations in the domain of tissue engineering and regenerative medicine are focused on obtaining novel scaffolds adapted as potential delivery systems to restore lost tissue functions and properties. In this study, we describe the fabrication and evaluation of a novel 3D scaffold structure based on collagen and silk sericin (CollSS) enriched with microcapsules containing natural compounds, curcumin (C), and/or quercetin (Q). These 3D composites were characterized by FT-IR spectroscopy, water uptake, in vitro collagenase degradation, and SEM microscopy. Furthermore, they were biologically evaluated in terms of biocompatibility, cell adhesion, anti-inflammatory, and antioxidant properties. All tested materials indicated an overall suitable biocompatibility, with the best results obtained for the one containing both flavonoids. This study suggests the cumulative beneficial effect of C and Q, encapsulated in the same composite, as a potential non-invasive therapeutic strategy for skin tissue regeneration in patients suffering from chronic wounds.

18.
Biomater Adv ; 161: 213894, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38796956

RESUMEN

Engineering of scaffolds for bone regeneration is often inspired by the native extracellular matrix mimicking its composite fibrous structure. In the present study, we used low loadings of diatomite earth (DE) biosilica to improve the bone regeneration potential of gelatin electrospun fibrillar microenvironments. We explored the effect of increasing the DE content from 1 % to 3 % and 5 %, respectively, on the physico-chemical properties of the fibrous scaffolds denoted FG_DE1, FG_DE3, FG_DE5, regarding the aqueous media affinity, stability under simulated physiological conditions, morphology characteristics, and local mechanical properties at the surface. The presence of biosilica generated composite structures with lower swelling degrees and higher stiffness when compared to gelatin fibers. Increasing DE content led to higher Young modulus, while the stability of the protein matrix in PBS, at 37 °C, over 21 was significantly decreased by the presence of diatomite loadings. The best preosteoblast response was obtained for FG_DE3, with enhanced mineralization during the osteogenic differentiation when compared to the control sample without diatomite. 5 % DE in FG_DE5 proved to negatively influence cells' metabolic activity and morphology. Hence, the obtained composite microfibrillar scaffolds might find application as osteoblast-responsive materials for bone tissue engineering.


Asunto(s)
Gelatina , Osteoblastos , Ingeniería de Tejidos , Andamios del Tejido , Gelatina/química , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Animales , Tierra de Diatomeas/química , Osteogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Ratones , Regeneración Ósea/efectos de los fármacos , Línea Celular , Microambiente Celular/efectos de los fármacos , Microfibrillas/química , Microfibrillas/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Matriz Extracelular/efectos de los fármacos
19.
Int J Mol Sci ; 14(1): 1870-89, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23325052

RESUMEN

Current clinical strategies for adipose tissue engineering (ATE), including autologous fat implants or the use of synthetic surrogates, not only are failing in the long term, but also can't face the latest requirements regarding the aesthetic restoration of the resulted imperfections. In this context, modern strategies in current ATE applications are based on the implantation of 3D cell-scaffold bioconstructs, designed for prospective achievement of in situ functional de novo tissue. Thus, in this paper, we reported for the first time the evaluation of a spongious 60% collagen and 40% sericin scaffold preseeded with human adipose-derived stem cells (hADSCs) in terms of biocompatibility and adipogenic potential in vitro. We showed that the addition of the sticky protein sericin in the composition of a classical collagen sponge enhanced the adhesion and also the proliferation rate of the seeded cells, thus improving the biocompatibility of the novel scaffold. In addition, sericin stimulated PPARγ2 overexpression, triggering a subsequent upregulated expression profile of FAS, aP2 and perilipin adipogenic markers. These features, together with the already known sericin stimulatory potential on cellular collagen production, promote collagen-sericin biomatrix as a good candidate for soft tissue reconstruction and wound healing applications.


Asunto(s)
Adipogénesis , Tejido Adiposo/metabolismo , Matriz Extracelular/química , Sericinas/química , Células Madre/metabolismo , Andamios del Tejido/química , Tejido Adiposo/citología , Adulto , Antígenos de Diferenciación/biosíntesis , Células Cultivadas , Femenino , Humanos , Ensayo de Materiales/métodos , Células Madre/citología
20.
J Mater Chem B ; 11(34): 8241-8250, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37565837

RESUMEN

In an effort to obtain porous scaffolds with improved mechanical properties and biocompatibility, the current study discusses nanocomposite materials based on poly(propylene fumarate)/N-vinyl pyrrolidone(PPF/NVP) networks reinforced with polymer-modified graphene oxide (GO@PPF). The GO@PPF nanofiller was synthesized through a facile and convenient surface esterification reaction, and the successful functionalization was demonstrated by complementary techniques such as FT-IR, XPS, TGA and TEM. The PPF/NVP/GO@PPF porous scaffolds obtained using NaCl as a porogen were further characterized in terms of morphology, mechanical properties, sol fraction, and in vitro degradability. SEM and nanoCT examinations of NaCl-leached samples revealed networks of interconnected pores, fairly uniform in size and shape. We show that the incorporation of GO@PPF in the polymer matrix leads to a significant enhancement in the mechanical properties, which we attribute to the formation of denser and more homogenous networks, as suggested by a decreased sol fraction for the scaffolds containing a higher amount of GO@PPF. Moreover, the surface of mineralized PPF/NVP/GO@PPG scaffolds is uniformly covered in hydroxyapatite-like crystals having a morphology and Ca/P ratio similar to bone tissue. Furthermore, the preliminary biocompatibility assessment revealed a good interaction between PPF/PVP/GO@PPF scaffolds and murine pre-osteoblasts in terms of cell viability and proliferation.


Asunto(s)
Polímeros , Cloruro de Sodio , Animales , Ratones , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA