Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38400236

RESUMEN

Pressure sensing plays an important role in many industrial fields; conventional electronic pressure sensors struggle to survive in the harsh environment. Recently microelectromechanical systems (MEMS) fiber-optic Fabry-Perot (FP) pressure sensors have attracted great interest. Here we review the basic principles of MEMS fiber-optic FP pressure sensors and then discuss the sensors based on different materials and their industrial applications. We also introduce recent progress, such as two-photon polymerization-based 3D printing technology, and the state-of-the-art in this field, e.g., sapphire-based sensors that work up to 1200 °C. Finally, we discuss the limitations and opportunities for future development.

2.
Anal Chem ; 95(34): 12893-12902, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37589895

RESUMEN

Genotoxic impurities (GTIs) occurred in drugs, and food and environment pose a threat to human health. Accurate and sensitive evaluation of GTIs is of significance. Ames assay is the existing gold standard method. However, the pathogenic bacteria model lacks metabolic enzymes and requires mass GTIs, leading to insufficient safety, accuracy, and sensitivity. Whole-cell microbial sensors (WCMSs) can use normal strains to simulate the metabolic environment, achieving safe, sensitive, and high-throughput detection and evaluation for GTIs. Here, based on whether GTIs causing DNA alkylation required metabolic enzymes or not, two DNA repair-responsive engineered WCMS systems were constructed including Escherichia coli-WCMS and yeast-WCMS. A DNA repair-responsive promoter as a sensing element was coupled with an enhanced green fluorescent protein as a reporter to construct plasmids for introduction into WCMS. The ada promoter was screened out in the E. coli-WCMS, while the MAG1 promoter was selected for the yeast-WCMS. Different E. coli and yeast strains were modified by gene knockout and mutation to eliminate the interference and enhance the GTI retention in cells and further improved the sensitivity. Finally, GTI consumption of WCMS for the evaluation of methyl methanesulfonate (MMS) and nitrosamines was decreased to 0.46-8.53 µg and 0.068 ng-2.65 µg, respectively, decreasing 2-3 orders of magnitude compared to traditional methods. This study provided a novel approach to measure GTIs with different DNA damage pathways at a molecular level and facilitated the high-throughput screening and sensitive evaluation of GTIs.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Escherichia coli/genética , Reparación del ADN , Daño del ADN
3.
Sensors (Basel) ; 23(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37960499

RESUMEN

To develop implementation research on distributed optical fiber sensing technology, field tests were conducted on municipal roads and railways using a distributed acoustic sensor (DAS). Data were collected by the DAS during a field test for a long time period (more than 20 min), and we conducted short-term (<10 s) and long-term (≥10 s) analyses on these data separately. In the short-term data analysis, the vehicle type, vehicle length, and working status of the vehicle engine or the compressor were identified. In the long-term data analysis, the traffic flow was monitored, and the running distance, acceleration, speed, and braking distance of the vehicle were obtained. The characteristics of the vehicle operation data obtained in these field tests are important in developing the data processing method of DASs, which will help to promote the implementation of DASs.

4.
Nano Lett ; 22(21): 8688-8694, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36264028

RESUMEN

Nitrite, a type of food additive, has been proved convertible to genotoxic nitrosamines in the gastrointestinal tract by intestinal flora. There is no appropriate method for in situ detection of nitrosamines. Herein, plasmid-introduced Saccharomyces cerevisiae, which can respond to nitrosamine-induced DNA damage and activate pMAG1-based DNA damage repair (DDR), was designed as whole-cell biosensors (WCBs) for monitoring the in situ generated nitrosamines by a reporter gene expressing enhanced green fluorescent protein (EGFP). In order to protect the validity of WCBs (pMAG1 yeast) from the gastric acid environment, a type of metal-organic gel (MOG), coordinated by Fe3+ and 2,2'-thiodiacetic acid (TDA), was prepared to embed the WCBs. The MOG(Fe-TDA) is gastric acid resistant and can deliver the pMAG1 yeast to the gut without compromising the performance of pMAG1 yeast to detect in situ generated nitrosamines. The genotoxicity of nitrosamines converted from nitrite was successfully detected in the gastrointestinal tract of mice.


Asunto(s)
Técnicas Biosensibles , Nitrosaminas , Ratones , Animales , Nitritos , Saccharomyces cerevisiae/genética , Metales , Tracto Gastrointestinal
5.
Appl Microbiol Biotechnol ; 105(13): 5607-5616, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34228183

RESUMEN

Nitrosamine compounds, represented by N-nitrosodimethylamine, are regarded as potentially genotoxic impurities (PGIs) due to their hazard warning structure, which has attracted great attention of pharmaceutical companies and regulatory authorities. At present, great research gaps exist in genotoxicity assessment and carcinogenicity comparison of nitrosamine compounds. In this work, a collection of GFP-fused yeast cells representing DNA damage repair pathways were used to evaluate the genotoxicity of eight nitrosamine compounds (10-6-105 µg/mL). The high-resolution expression profiles of GFP-fused protein revealed the details of the DNA damage repair of nitrosamines. Studies have shown that nitrosamine compounds can cause extensive DNA damage and activate multiple repair pathways. The evaluation criteria based on the total expression level of protein show a good correlation with the mammalian carcinogenicity data TD50, and the yeast cell collection can be used as a potential reliable criterion for evaluating the carcinogenicity of compounds. The assay based on DNA damage pathway integration has high sensitivity and can be used as a supplementary method for the evaluation of trace PGIs in actual production. KEY POINTS: • The genotoxicity mechanism of nitrosamines was systematically studied. • The influence of compound structure on the efficacy of genotoxicity was explored. • GFP-fused yeast cells have the potential to evaluate impurities in production.


Asunto(s)
Técnicas Biosensibles , Nitrosaminas , Animales , Daño del ADN , Mutágenos/toxicidad , Nitrosaminas/toxicidad , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA