Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 123(12): 7854-7889, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37253224

RESUMEN

With the rising diabetic population, the demand for glucose sensing devices has also been on an increasing trend. Accordingly, the field of glucose biosensors for diabetes management has witnessed tremendous scientific and technological advancements since the introduction of the first enzymatic glucose biosensor in the 1960s. Among these, electrochemical biosensors hold considerable potential for tracking dynamic glucose profiles in real time. The recent evolution of wearable devices has opened opportunities to use alternative body fluids in a pain-free, noninvasive or minimally invasive manner. This review aims to present a comprehensive report about the status and promise of wearable electrochemical sensors for on-body glucose monitoring. We start by highlighting the importance of diabetes management and how sensors can contribute toward its effective monitoring. We then discuss the electrochemical glucose sensing mechanisms, evolution of such glucose sensors over time, different versions of wearable glucose biosensors targeting various biofluids, and multiplexed wearable sensors toward optimal diabetes management. Finally, we focus on the commercial aspects of wearable glucose biosensors, starting with existing continuous glucose monitors, followed by other emerging sensing technologies, and concluding with highlighting the key prospects toward personalized diabetes management in connection to an autonomous closed-loop artificial pancreas.


Asunto(s)
Técnicas Biosensibles , Diabetes Mellitus , Dispositivos Electrónicos Vestibles , Humanos , Automonitorización de la Glucosa Sanguínea , Glucemia , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/terapia
2.
Small ; 20(15): e2308278, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009756

RESUMEN

Designing cost-efffective electrocatalysts for the oxygen evolution reaction (OER) holds significant importance in the progression of clean energy generation and efficient energy storage technologies, such as water splitting and rechargeable metal-air batteries. In this work, an OER electrocatalyst is developed using Ni and Fe precursors in combination with different proportions of graphene oxide. The catalyst synthesis involved a rapid reduction process, facilitated by adding sodium borohydride, which successfully formed NiFe nanoparticle nests on graphene support (NiFe NNG). The incorporation of graphene support enhances the catalytic activity, electron transferability, and electrical conductivity of the NiFe-based catalyst. The NiFe NNG catalyst exhibits outstanding performance, characterized by a low overpotential of 292.3 mV and a Tafel slope of 48 mV dec-1, achieved at a current density of 10 mA cm- 2. Moreover, the catalyst exhibits remarkable stability over extended durations. The OER performance of NiFe NNG is on par with that of commercial IrO2 in alkaline media. Such superb OER catalytic performance can be attributed to the synergistic effect between the NiFe nanoparticle nests and graphene, which arises from their large surface area and outstanding intrinsic catalytic activity. The excellent electrochemical properties of NiFe NNG hold great promise for further applications in energy storage and conversion devices.

3.
Anal Chem ; 95(9): 4521-4528, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36843270

RESUMEN

Single-atomic-site catalysts (SASCs) with peroxidase (POD)-like activities have been widely used in various sensing platforms, like the enzyme-linked immunosorbent assay (ELISA). Herein, a two-dimensional Fe-N-C-based SASC (2D Fe-SASC) is successfully synthesized with excellent POD-like activity (specific activity = 90.11 U/mg) and is used to design the ELISA for herbicide detection. The 2D structure of Fe-SASC enables the exposure of numerous single atomic active sites on the surface as well as boosts the POD-like activity, thereby enhancing the sensing performance. 2D Fe-SASC is assembled into competitive ELISA kit, which achieves an excellent detection performance for 2,4-dichlorophenoxyacetic acid (2,4-D). Fe-SASC has great potential in replacing high-cost natural enzymes and working on various advanced sensing platforms with high sensitivity for the detection of various target biomarkers.


Asunto(s)
Herbicidas , Peroxidasa , Peroxidasa/química , Inmunoensayo/métodos , Ensayo de Inmunoadsorción Enzimática/métodos
4.
Small ; 18(37): e2203001, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35986440

RESUMEN

Multifunctional nanozymes can benefit biochemical analysis via expanding sensing modes and enhancing analytical performance, but designing multifunctional nanozymes to realize the desired sensing of targets is challenging. In this work, single-atomic iron doped carbon dots (SA Fe-CDs) are designed and synthesized via a facile in situ pyrolysis process. The small-sized CDs not only maintain their tunable fluorescence, but also serve as a support for loading dispersed active sites. Monoatomic Fe offers SA Fe-CDs exceptional oxidase-mimetic activity to catalyze 3,3',5,5'-tetramethylbenzidine (TMB) oxidation with fast response (Vmax  = 10.4 nM s-1 ) and strong affinity (Km  = 168 µM). Meanwhile, their photoluminescence is quenched by the oxidation product of TMB due to inner filter effect. Phosphate ions (Pi) can suppress the oxidase-mimicking activity and restore the photoluminescence of SA Fe-CDs by interacting with Fe active sites. Based on this principle, a dual-mode colorimetric and fluorescence assay of Pi with high sensitivity, selectivity, and rapid response is established. This work paves a path to develop multifunctional enzyme-like catalysts, and offers a simple but efficient dual-mode method for phosphate monitoring, which will inspire the exploration of multi-mode sensing strategies based on nanozyme catalysis.


Asunto(s)
Carbono , Puntos Cuánticos , Bencidinas , Carbono/química , Hierro/química , Límite de Detección , Oxidorreductasas , Fosfatos , Puntos Cuánticos/química
5.
Chemistry ; 28(66): e202201881, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36031561

RESUMEN

Currently, the excessive consumption of fossil fuels is accompanied by massive emissions of CO2 , leading to severe energy shortages and intensified global warming. It is of great significance to develop and use renewable clean energy while reducing the concentration of CO2 in the atmosphere. Photocatalytic technology is a promising strategy for carbon dioxide conversion. Clearly, the achievement of the above goals largely depends on the design and construction of catalysts. This review is mainly focused on the application of 2D materials for photocatalytic CO2 reduction. The contribution of synthetic strategies to their structure and performance is emphasized. Finally, the current challenges, and prospects of 2D materials for photoreduction of CO2 with high efficiency, even for practical applications are discussed. It is hoped that this review can provide some guidance for the rational design, controllable synthesis of 2D materials, and their application for efficient photocatalytic CO2 reduction.

6.
Nano Lett ; 21(10): 4508-4515, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33998804

RESUMEN

Highly efficient noble-metal-free electrocatalysts for oxygen reduction reaction (ORR) are essential to reduce the costs of fuel cells and metal-air batteries. Herein, a single-atom Ce-N-C catalyst, constructed of atomically dispersed Ce anchored on N-doped porous carbon nanowires, is proposed to boost the ORR. This catalyst has a high Ce content of 8.55 wt % and a high activity with ORR half-wave potentials of 0.88 V in alkaline media and 0.75 V in acidic electrolytes, which are comparable to widely studied Fe-N-C catalysts. A Zn-air battery based on this material shows excellent performance and durability. Density functional theory calculations reveal that atomically dispersed Ce with adsorbed hydroxyl species (OH) can significantly reduce the energy barrier of the rate-determining step resulting in an improved ORR activity.

7.
Small ; 17(25): e2100664, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34028983

RESUMEN

Heme enzymes, with the pentacoordinate heme iron active sites, possess high catalytic activity and selectivity in biosensing applications. However, they are still subject to limited catalytic stability in the complex environment and high cost for broad applications in electrochemical sensing. It is meaningful to develop a novel substitute that has a similar structure to some heme enzymes and mimics their enzyme activities. One emerging strategy is to design the Fe-N-C based single-atomic site catalysts (SASCs). The obtained atomically dispersed Fe-Nx active sites can mimic the active sites of heme enzymes effectively. In this work, a SASC (Fe-SASC/NW) is synthesized by doping single iron atoms in polypyrrole (PPy) derived carbon nanowire via a zinc-atom-assisted method. The proposed Fe-SASC/NW shows high heme enzyme-like catalytic performance for hydrogen peroxide (H2 O2 ) with a specific activity of 42.8 U mg-1 . An electrochemical sensor based on Fe-SASC/NW is developed for the detection of H2 O2 . This sensor exhibits a wide detection concentration range from 5.0 × 10-10 m to 0.5 m and an excellent limit of detection (LOD) of 46.35 × 10-9 m. Such excellent catalytic activity and electrochemical sensing sensitivity are attributed to the isolated Fe-Nx active sites and their structural similarity with natural metalloproteases.


Asunto(s)
Hemo , Peróxido de Hidrógeno , Dominio Catalítico , Polímeros , Pirroles
8.
Small ; 17(16): e2004454, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33306278

RESUMEN

Carbon-based single-atom catalysts (CSACs) have recently received extensive attention in catalysis research. However, the preparation process of CSACs involves a high-temperature treatment, during which metal atoms are mobile and aggregated into nanoparticles, detrimental to the catalytic performance. Herein, an ion-imprinting derived strategy is proposed to synthesize CSACs, in which isolated metal-nitrogen-carbon (Me-N4 -Cx ) moiety covalently binds oxygen atoms in Si-based molecular sieve frameworks. Such a feature makes Me-N4 -Cx moiety well protected/confined during the heat treatment, resulting in the final material enriched with single-atom metal active sites. As a proof of concept, a single-atom Fe-N-C catalyst is synthesized by using this ion-imprinting derived strategy. Experimental results and theoretical calculations demonstrate high concentration of single FeN4 active sites distributed in this catalyst, resulting in an outstanding oxygen reduction reaction (ORR) performance with a half-wave potential of 0.908 V in alkaline media.

9.
Cancer Cell Int ; 20: 6, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31920461

RESUMEN

BACKGROUNDS: LncRNA Brain Cytoplasmic RNA 1 (BCYRN1) has been certified to modulate cancer cells growth and aggressiveness in several tumors. However, research about function of BCYRN1 in hepatocellular carcinoma (HCC) is limited. Therefore, our research intends to explore the function of BCYRN1 in HCC. METHODS: HepG2 and BEL-7402 cell lines were employed for later function experiments. Differently expression levels of BCYRN1, miR-490-3p, and POU class 3 homeobox 2 (POU3F2) were determined on the base of TCGA dataset including 375 HCC patients and 50 normal. 370 cases of patients, which have fairly complete clinical data, were utilized for survival analysis of BCYRN1, miR-490-3p, or POU3F2 by Kaplan-Meier method. Relative expression pattern of BCYRN1 was examined by quantitative real time polymerase chain reaction (qRT-PCR), and relative expression level of POU3F2 was assessed by qRT-PCR and western blot. Cell biological behaviors were analyzed by cell counting kit-8, cloning formation, and transwell assays. Bioinformatics software and dual luciferase assay were applied to predict and confirm the targeted relationship between BCYRN1 and miR-490-3p, as well as miR-490-3p and POU3F2. Further associations among BCYRN1, miR-490-3p, and POU3F2 were analyzed by rescue assays. RESULTS: Our results exhibited that BCYRN1 was over expressed in HCC samples, which was connected with unfavorable prognosis in HCC patients. In addition, a series of experiments exhibited that overexpression of BCYRN1 significantly expedited HCC cells growth, clone formation, and movement abilities, and vice versa. Moreover, targeted relationships between BCYRN1 and miR-490-3p, as well as miR-490-3p and POU3F2 were affirmed by dual luciferase assay. Furthermore, POU3F2 expression was negatively connected with the expression of miR-490-3p and positively associated with BCYRN1 expression. Whilst, either overexpression of miR-490-3p or knockdown of POU3F2 could remarkably inhibit the increasing trends of proliferation, clone formation, invasion, and migration abilities induced by BCYRN1 in HCC cells. CONCLUSIONS: BCYRN1, served as a competing endogenous RNA, up-regulated the expression of POU3F2 to promote the development of HCC through sponging miR-490-3p, supplying novel molecular targets and underlying prognostic biomarkers for HCC therapy.

10.
Mater Today (Kidlington) ; 37: 112-125, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33093794

RESUMEN

The Blood-Brain Barrier (BBB), a unique structure in the central nervous system (CNS), protects the brain from bloodborne pathogens by its excellent barrier properties. Nevertheless, this barrier limits therapeutic efficacy and becomes one of the biggest challenges in new drug development for neurodegenerative disease and brain cancer. Recent breakthroughs in nanotechnology have resulted in various nanoparticles (NPs) as drug carriers to cross the BBB by different methods. This review presents the current understanding of advanced NP-mediated non-invasive drug delivery for the treatment of neurological disorders. Herein, the complex compositions and special characteristics of BBB are elucidated exhaustively. Moreover, versatile drug nanocarriers with their recent applications and their pathways on different drug delivery strategies to overcome the formidable BBB obstacle are briefly discussed. In terms of significance, this paper provides a general understanding of how various properties of nanoparticles aid in drug delivery through BBB and usher the development of novel nanotechnology-based nanomaterials for cerebral disease therapies.

11.
Small ; 15(43): e1902485, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31468663

RESUMEN

Substantial progress has been made in applying nanotubes in biomedical applications such as bioimaging and drug delivery due to their unique architecture, characterized by very large internal surface areas and high aspect ratios. However, the biomedical applications of organic nanotubes, especially for those assembled from sequence-defined molecules, are very uncommon. In this paper, the synthesis of two new peptoid nanotubes (PepTs1 and PepTs2) is reported by using sequence-defined and ligand-tagged peptoids as building blocks. These nanotubes are highly robust due to sharing a similar structure to those of nontagged ones, and offer great potential to hold guest molecules for biomedical applications. The findings indicate that peptoid nanotubes loaded with doxorubicin drugs are promising candidates for targeted tumor cell imaging and chemo-photodynamic therapy.


Asunto(s)
Biomimética , Nanotubos/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Peptoides/farmacología , Fotoquimioterapia , Línea Celular Tumoral , Doxorrubicina/farmacología , Endocitosis/efectos de los fármacos , Humanos , Ligandos , Peptoides/química
12.
Macromol Rapid Commun ; 40(17): e1900096, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31111979

RESUMEN

Molecular imprinting is an approach of generating imprinting cavities in polymer structures that are compatible with the target molecules. The cavities have memory for shape and chemical recognition, similar to the recognition mechanism of antigen-antibody in organisms. Their structures are also called biomimetic receptors or synthetic receptors. Owing to the excellent selectivity and unique structural predictability of molecularly imprinted materials (MIMs), practical MIMs have become a rapidly evolving research area providing key factors for understanding separation, recognition, and regenerative properties toward biological small molecules to biomacromolecules, even cell and microorganism. In this review, the characteristics, morphologies, and applicability of currently popular carrier materials for molecular imprinting, especially the fundamental role of hydrogels, porous materials, hierarchical nanoparticles, and 2D materials in the separation and recognition of biological templates are discussed. Moreover, through a series of case studies, emphasis is given on introducing imprinting strategies for biological templates with different molecular scales. In particular, the differences and connections between small molecular imprinting (bulk imprinting, "dummy" template imprinting, etc.), large molecular imprinting (surface imprinting, interfacial imprinting, etc.), and cell imprinting strategies are demonstrated in detail. Finally, future research directions are provided.


Asunto(s)
Hidrogeles/química , Sustancias Macromoleculares/química , Impresión Molecular/métodos , Nanopartículas/química , Polímeros/química , Porosidad
13.
Nanotechnology ; 29(37): 375604, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-29926809

RESUMEN

In order to facilitate the broad applications of molecular recognition materials in biomedical areas, it is critical to enhance their adsorption capacity while maintaining their excellent recognition performance. In this work, we designed and synthesized well-defined peptide-imprinted mesoporous silica (PIMS) for specific recognition of an immunostimulating hexapeptide from human casein (IHHC) by using amphiphilic ionic liquid as the surfactant to anchor IHHC via a combination of one-step sol-gel method and docking oriented imprinting approach. Thereinto, theoretical calculation was employed to reveal the multiple binding interactions and dual-template configuration between amphiphilic ionic liquid and IHHC. The fabricated PIMS was characterized and an in-depth analysis of specific recognition mechanism was conducted. Results revealed that both adsorption and recognition capabilities of PIMS far exceeded that of the NIMS's. More significantly, the PIMS exhibited a superior binding capacity (60.5 mg g-1), which could increase 18.9% than the previous work. The corresponding imprinting factor and selectivity coefficient could reach up to 4.51 and 3.30, respectively. The PIMS also possessed lickety-split kinetic binding for IHHC, where the equilibrium time was only 10 min. All of these merits were due to the high surface area and the synergistic effect of multiple interactions (including hydrogen bonding, π-π stacking, ion-ion electrostatic interactions and van der Waals interactions, etc) between PIMS and IHHC in imprinted sites. The present work suggests the potential application of PIMS for large-scale and high-effective separation of IHHC, which may lead to their broad applications in drug/gene deliver, biosensors, catalyst and so on.

15.
ACS Sens ; 9(6): 3212-3223, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38820602

RESUMEN

Wearable sweat biosensors have shown great progress in noninvasive, in situ, and continuous health monitoring to demonstrate individuals' physiological states. Advances in novel nanomaterials and fabrication methods promise to usher in a new era of wearable biosensors. Here, we introduce a three-dimensional (3D)-printed flexible wearable health monitor fabricated through a unique one-step continuous manufacturing process with self-supporting microfluidic channels and novel single-atom catalyst-based bioassays for measuring the sweat rate and concentration of three biomarkers. Direct ink writing is adapted to print the microfluidic device with self-supporting structures to harvest human sweat, which eliminates the need for removing sacrificial supporting materials and addresses the contamination and sweat evaporation issues associated with traditional sampling methods. Additionally, the pick-and-place strategy is employed during the printing process to accurately integrate the bioassays, improving manufacturing efficiency. A single-atom catalyst is developed and utilized in colorimetric bioassays to improve sensitivity and accuracy. A feasibility study on human skin successfully demonstrates the functionality and reliability of our health monitor, generating reliable and quantitative in situ results of sweat rate, glucose, lactate, and uric acid concentrations during physical exercise.


Asunto(s)
Biomarcadores , Impresión Tridimensional , Sudor , Dispositivos Electrónicos Vestibles , Humanos , Sudor/química , Biomarcadores/análisis , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Dispositivos Laboratorio en un Chip , Ácido Láctico/análisis , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Ácido Úrico/análisis , Colorimetría/instrumentación , Colorimetría/métodos
16.
Sci Adv ; 10(24): eadn6157, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38865468

RESUMEN

Lung metastasis poses a formidable challenge in the realm of cancer treatment, with conventional chemotherapy often falling short due to limited targeting and low accumulation in the lungs. Here, we show a microrobot approach using motile algae for localized delivery of drug-loaded nanoparticles to address lung metastasis challenges. The biohybrid microrobot [denoted "algae-NP(DOX)-robot"] combines green microalgae with red blood cell membrane-coated nanoparticles containing doxorubicin, a representative chemotherapeutic drug. Microalgae provide autonomous propulsion in the lungs, leveraging controlled drug release and enhanced drug dispersion to exert antimetastatic effects. Upon intratracheal administration, algae-NP(DOX)-robots efficiently transport their drug payload deep into the lungs while maintaining continuous motility. This strategy leads to rapid drug distribution, improved tissue accumulation, and prolonged retention compared to passive drug-loaded nanoparticles and free drug controls. In a melanoma lung metastasis model, algae-NP(DOX)-robots exhibit substantial improvement in therapeutic efficacy, reducing metastatic burden and extending survival compared to control groups.


Asunto(s)
Doxorrubicina , Neoplasias Pulmonares , Nanopartículas , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Animales , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Nanopartículas/química , Ratones , Línea Celular Tumoral , Humanos , Sistemas de Liberación de Medicamentos , Microalgas , Robótica , Progresión de la Enfermedad , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/química
17.
Adv Mater ; 36(10): e2209633, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36722360

RESUMEN

Fe-N-C single-atom catalysts (SACs) exhibit excellent peroxidase (POD)-like catalytic activity, owing to their well-defined isolated iron active sites on the carbon substrate, which effectively mimic the structure of natural peroxidase's active center. To further meet the requirements of diverse biosensing applications, SAC POD-like activity still needs to be continuously enhanced. Herein, a phosphorus (P) heteroatom is introduced to boost the POD-like activity of Fe-N-C SACs. A 1D carbon nanowire (FeNCP/NW) catalyst with enriched Fe-N4 active sites is designed and synthesized, and P atoms are doped in the carbon matrix to affect the Fe center through long-range interaction. The experimental results show that the P-doping process can boost the POD-like activity more than the non-P-doped one, with excellent selectivity and stability. The mechanism analysis results show that the introduction of P into SAC can greatly enhance POD-like activity initially, but its effect becomes insignificant with increasing amount of P. As a proof of concept, FeNCP/NW is employed in an enzyme cascade platform for highly sensitive colorimetric detection of the neurotransmitter acetylcholine.


Asunto(s)
Peroxidasa , Peroxidasas , Carbono , Colorantes , Hierro , Fósforo
18.
Nat Med ; 29(7): 1623-1630, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37464029

RESUMEN

Growing life expectancy poses important societal challenges, placing an increasing burden on ever more strained health systems. Digital technologies offer tremendous potential for shifting from traditional medical routines to remote medicine and transforming our ability to manage health and independence in aging populations. In this Perspective, we summarize the current progress toward, and challenges and future opportunities of, harnessing digital technologies for effective geriatric care. Special attention is given to the role of wearables in assisting older adults to monitor their health and maintain independence at home. Challenges to the widespread future use of digital technologies in this population will be discussed, along with a vision for how such technologies will shape the future of healthy aging.


Asunto(s)
Esperanza de Vida , Medicina , Tecnología , Humanos , Anciano
19.
Nat Rev Endocrinol ; 19(8): 487-495, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37217746

RESUMEN

Tremendous progress has been made towards achieving tight glycaemic control in individuals with diabetes mellitus through the use of frequent or continuous glucose measurements. However, in patients who require insulin, accurate dosing must consider multiple factors that affect insulin sensitivity and modulate insulin bolus needs. Accordingly, an urgent need exists for frequent and real-time insulin measurements to closely track the dynamic blood concentration of insulin during insulin therapy and guide optimal insulin dosing. Nevertheless, traditional centralized insulin testing cannot offer timely measurements, which are essential to achieving this goal. This Perspective discusses the advances and challenges in moving insulin assays from traditional laboratory-based assays to frequent and continuous measurements in decentralized (point-of-care and home) settings. Technologies that hold promise for insulin testing using disposable test strips, mobile systems and wearable real-time insulin-sensing devices are discussed. We also consider future prospects for continuous insulin monitoring and for fully integrated multisensor-guided closed-loop artificial pancreas systems.


Asunto(s)
Diabetes Mellitus Tipo 1 , Resistencia a la Insulina , Páncreas Artificial , Humanos , Insulina/uso terapéutico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Glucemia , Sistemas de Infusión de Insulina , Automonitorización de la Glucosa Sanguínea , Hipoglucemiantes/uso terapéutico
20.
iScience ; 26(7): 107009, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37534157

RESUMEN

Electrocatalytic CO2 reduction technology has been considered a promising approach to alleviate the severe environmental and energy issues caused by the anthropogenic over-emission of CO2. Coupling CO2 reduction with nitrogen (N)-pollutants reduction from wastewater to produce higher valued products (e.g., urea, amide, amine, etc.) could significantly extend the application scenarios and product categories of CO2 reduction technologies. This paper investigates the available CO2 and N-pollutants sources and summarizes the recent progress of electrocatalytic C-N coupling reactions. Based on the fundamental research, technical concerns for scale-up applications of C-N coupling electrocatalysis are thoroughly discussed. Finally, we prospect the opportunities and challenges with an in-depth understanding of the underlying dominant factors in applying C-N coupling electrocatalysis. Further development in recycling CO2 and N pollutants via the electrocatalytic C-N coupling process is also discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA