Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Imeta ; 3(2): e159, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882495

RESUMEN

The gut microbiota is a complex community of microorganisms inhabiting the intestinal tract, which plays a vital role in human health. It is intricately involved in the metabolism, and it also affects diverse physiological processes. The gut-lung axis is a bidirectional pathway between the gastrointestinal tract and the lungs. Recent research has shown that the gut microbiome plays a crucial role in immune response regulation in the lungs and the development of lung diseases. In this review, we present the interrelated factors concerning gut microbiota and the associated metabolites in pulmonary hypertension (PH), a lethal disease characterized by elevated pulmonary vascular pressure and resistance. Our research team explored the role of gut-microbiota-derived metabolites in cardiovascular diseases and established the correlation between metabolites such as putrescine, succinate, trimethylamine N-oxide (TMAO), and N, N, N-trimethyl-5-aminovaleric acid with the diseases. Furthermore, we found that specific metabolites, such as TMAO and betaine, have significant clinical value in PH, suggesting their potential as biomarkers in disease management. In detailing the interplay between the gut microbiota, their metabolites, and PH, we underscored the potential therapeutic approaches modulating this microbiota. Ultimately, we endeavor to alleviate the substantial socioeconomic burden associated with this disease. This review presents a unique exploratory analysis of the link between gut microbiota and PH, intending to propel further investigations in the gut-lung axis.

2.
Imeta ; 2(3): e124, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38867936

RESUMEN

Cardiovascular diseases (CVDs) continue to be a significant contributor to global mortality, imposing a substantial burden and emphasizing the urgent need for disease control to save lives and prevent disability. With advancements in technology and scientific research, novel mechanisms underlying CVDs have been uncovered, leading to the exploration of promising treatment targets aimed at reducing the global burden of the disease. One of the most intriguing findings is the relationship between CVDs and gut microbiota, challenging the traditional understanding of CVDs mechanisms and introducing the concept of the gut-heart axis. The gut microbiota, through changes in microbial compositions and functions, plays a crucial role in influencing local and systemic effects on host physiology and disease development, with its metabolites acting as key regulators. In previous studies, we have emphasized the importance of specific metabolites such as betaine, putrescine, trimethylamine oxide, and N,N,N-trimethyl-5-aminovaleric acid in the potential treatment of CVDs. Particularly noteworthy is the gut microbiota-associated metabolite succinate, which has garnered significant attention due to its involvement in various pathophysiological pathways closely related to CVDs pathogenesis, including immunoinflammatory responses, oxidative stress, and energy metabolism. Furthermore, we have identified succinate as a potential biomarker, highlighting its therapeutic feasibility in managing aortic dissection and aneurysm. This review aims to comprehensively outline the characteristics of succinate, including its biosynthetic process, summarize the current evidence linking it to CVDs causation, and emphasize the host-microbial crosstalk involved in modulating CVDs. The insights presented here offer a novel paradigm for future management and control of CVDs.

3.
Sci Bull (Beijing) ; 68(11): 1162-1175, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37210332

RESUMEN

Intracranial aneurysm is the leading cause of nontraumatic subarachnoid hemorrhage. Evaluating the unstable (rupture and growth) risk of aneurysms is helpful to guild decision-making for unruptured intracranial aneurysms (UIA). This study aimed to develop a model for risk stratification of UIA instability. The UIA patients from two prospective, longitudinal multicenter Chinese cohorts recruited from January 2017 to January 2022 were set as the derivation cohort and validation cohort. The primary endpoint was UIA instability, comprising aneurysm rupture, growth, or morphology change, during a 2-year follow-up. Intracranial aneurysm samples and corresponding serums from 20 patients were also collected. Metabolomics and cytokine profiling analysis were performed on the derivation cohort (758 single-UIA patients harboring 676 stable UIAs and 82 unstable UIAs). Oleic acid (OA), arachidonic acid (AA), interleukin 1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) were significantly dysregulated between stable and unstable UIAs. OA and AA exhibited the same dysregulated trends in serums and aneurysm tissues. The feature selection process demonstrated size ratio, irregular shape, OA, AA, IL-1ß, and TNF-α as features of UIA instability. A machine-learning stratification model (instability classifier) was constructed based on radiological features and biomarkers, with high accuracy to evaluate UIA instability risk (area under curve (AUC), 0.94). Within the validation cohort (492 single-UIA patients harboring 414 stable UIAs and 78 unstable UIAs), the instability classifier performed well to evaluate the risk of UIA instability (AUC, 0.89). Supplementation of OA and pharmacological inhibition of IL-1ß and TNF-α could prevent intracranial aneurysms from rupturing in rat models. This study revealed the markers of UIA instability and provided a risk stratification model, which may guide treatment decision-making for UIAs.


Asunto(s)
Aneurisma Intracraneal , Humanos , Animales , Ratas , Aneurisma Intracraneal/diagnóstico , Estudios Prospectivos , Pueblos del Este de Asia , Factor de Necrosis Tumoral alfa , Medición de Riesgo
4.
Cell Metab ; 35(5): 742-757.e10, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37040763

RESUMEN

Nonalcoholic steatohepatitis (NASH) prevalence is rising with no pharmacotherapy approved. A major hurdle in NASH drug development is the poor translatability of preclinical studies to safe/effective clinical outcomes, and recent failures highlight a need to identify new targetable pathways. Dysregulated glycine metabolism has emerged as a causative factor and therapeutic target in NASH. Here, we report that the tripeptide DT-109 (Gly-Gly-Leu) dose-dependently attenuates steatohepatitis and fibrosis in mice. To enhance the probability of successful translation, we developed a nonhuman primate model that histologically and transcriptionally mimics human NASH. Applying a multiomics approach combining transcriptomics, proteomics, metabolomics, and metagenomics, we found that DT-109 reverses hepatic steatosis and prevents fibrosis progression in nonhuman primates, not only by stimulating fatty acid degradation and glutathione formation, as found in mice, but also by modulating microbial bile acid metabolism. Our studies describe a highly translatable NASH model and highlight the need for clinical evaluation of DT-109.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Fibrosis , Metabolismo de los Lípidos , Primates
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA