Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chembiochem ; 25(17): e202400334, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38925610

RESUMEN

Hydrogels are commonly used as wound dressings to help maintain a moist environment around the wound and isolate contaminants, thus promoting healing. For irregular wounds, the slow healing process and even infection may occur due to the inability of dressings to adhere well to the wound. Prussian blue (PB) is a metal-organic framework (MOF) material with excellent photothermal conversion and superior stability. In this paper, a kind of near-infrared (NIR) light triggered in-situ polymerized antimicrobial hydrogel was prepared. The free radical initiator was encapsulated in the hollow PB by a phase change material (PCM) to maintain stability. The raised temperature triggered by NIR induced the release and decomposition of the initiator. The matrix was formed by the cross-linking of double bonds on modified chitosan. The quaternary amine groups of modified chitosan and the photothermal properties of PB enhanced the antimicrobial properties of the hydrogel. High-quality wound healing was demonstrated in the whole skin defect model. This study provides a new reference for the preparation of in-situ polymerized hydrogel dressings for irregular wounds.


Asunto(s)
Ferrocianuros , Hidrogeles , Rayos Infrarrojos , Nanocompuestos , Polimerizacion , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Hidrogeles/síntesis química , Nanocompuestos/química , Ferrocianuros/química , Animales , Quitosano/química , Ratones , Antibacterianos/química , Antibacterianos/farmacología , Staphylococcus aureus/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología
2.
Macromol Rapid Commun ; : e2400339, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925556

RESUMEN

Chirality is ubiquitous in nature, and closely related to biological phenomena. Nature-originated nanomaterials such as cellulose nanocrystals (CNCs) are able to self-assemble into hierarchical chiral nematic CNC films and impart handedness to nano and micro scale. However, the effects of the chiral nematic surfaces on cell adhesion are still unknown. Herein, this work presents evidence that the left-handed self-assembled chiral nematic CNC films (L-CNC) significantly improve the adhesion of L929 fibroblasts compared to randomly arranged isotropic CNC films (I-CNC). The fluidic force microscopy-based single-cell force spectroscopy is introduced to assess the cell adhesion forces on the substrates of L-CNC and I-CNC, respectively. With this method, a maximum adhesion force of 133.2 nN is quantified for mature L929 fibroblasts after culturing for 24 h on L-CNC, whereas the L929 fibroblasts exert a maximum adhesion force of 78.4 nN on I-CNC under the same condition. Moreover, the instant SCFS reveals that the integrin pathways are involved in sensing the chirality of substrate surfaces. Overall, this work offers a starting point for the regulation of cell adhesion via the self-assembled nano and micro architecture of chiral nematic CNC films, with potential practical applications in tissue engineering and regenerative medicine.

3.
Opt Express ; 31(10): 16118-16126, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157697

RESUMEN

In this letter, a sub-pm linewidth, high pulse energy and high beam quality microsecond-pulse 766.699 nm Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. At an incident pump energy of 824 mJ, the maximum output energy of 132.5 mJ at 766.699 nm with linewidth of 0.66 pm and a pulse width of 100 µs is achieved at a repetition rate of 5 Hz. To the best of our knowledge, this is the highest pulse energy at 766.699 nm with pulse width of hundred micro-seconds for a Ti:sapphire laser. The beam quality factor M2 is measured to be 1.21. It could be precisely tuned from 766.623 to 766.755 nm with a tuning resolution of 0.8 pm. The wavelength stability is measured to be less than ±0.7 pm over 30 min. The sub-pm linewidth, high pulse energy and high beam quality Ti:sapphire laser at 766.699 nm can be used to create a polychromatic laser guide star together with a home-made 589 nm laser in the mesospheric sodium and potassium layer for the tip-tilt correction resulting in the near-diffraction limited imagery on a large telescope.

4.
Biomacromolecules ; 24(12): 5847-5858, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37956199

RESUMEN

In-depth understanding of the mechanisms underlying the adhesion of myocardial cells holds significant importance for the development of effective therapeutic biomaterials aimed at repairing damaged or pathological myocardial tissues. Herein, we present evidence that myocardial cells (H9C2) exhibit integrin-based mechanosensing during the initial stage of adhesion (within the first 2 h), enabling them to recognize and respond to variations in substrate stiffnesses. Moreover, the bioinformatics analysis of RNA transcriptome sequencing (RNA-seq) reveals that the gene expressions associated with initial stage focal adhesion (Ctgf, Cyr61, Amotl2, Prickle1, Serpine1, Akap12, Hbegf, and Nedd9) are up-regulated on substrates with elevated Young's modulus. The fluorescent immunostaining results also suggest that increased substrate stiffness enhances the expression of Y397-phosphorylated focal adhesion kinase (FAK Y397), talin, and vinculin and the assembly of F-actin in H9C2 cells, thereby facilitating the adhesion of myocardial cells on the substrate. Next, we utilize fluidic force microscopy (FluidFM)-based single-cell force spectroscopy (SCFS) to quantitatively evaluate the impact of substrate stiffness on the cell adhesion force and adhesion work, thus providing novel insights into the biomechanical regulation of initial cell adhesion. Our findings demonstrate that the maximum adhesion forces of myocardial cells exhibit a rise from 23.6 to 248.0 nN when exposed to substrates with different moduli. It is worth noting that once the αvß3 integrins are blocked, the disparities in the adhesion forces of myocardial cells on these substrates become negligible. These results exhibit remarkable sensitivity of myocardial cells to mechanical cues of the substrate, highlighting the role of αvß3 integrin as a biomechanical sensor for the regulation of cell adhesion. Overall, this work offers a prospective approach for the regulation of cell adhesion via integrin mechanosensing with potential practical applications in the areas of tissue engineering and regenerative medicine.


Asunto(s)
Señales (Psicología) , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Adhesión Celular/fisiología , Integrinas/metabolismo , Adhesiones Focales/metabolismo
5.
Small ; 17(11): e2006004, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33619841

RESUMEN

The unsymmetrical morphology and unique properties of Janus nanoparticles (JNPs) provide superior performances for biomedical applications. In this work, a general and facile strategy is developed to construct a series of symmetrical and unsymmetrical chitosan/gold nanoparticles. Taking advantage of the active motion derived from Janus structure, selective surface functionalization of polysaccharide domain, and photothermal effect of gold nanorods, Janus chitosan/gold nanoparticles (J-Au-CS) are selected as a model system to construct Janus-structured chitosan/gold nanohybrids (J-ACP). Near-infrared (NIR)-responsive J-ACP composed of polycationic chitosan nanospheres and PEGylated gold nanorods hold great potential to realize photoacoustic (PA) imaging-guided complementary photothermal therapy (PTT)/gene therapy for breast cancer. The morphology effect of chitosan/gold nanostructures on enhanced PTT, cellular uptake, and gene transfection is investigated. The feasibility of PA imaging to track the accumulation of J-ACP and guide PTT is also explored. Notably, synergistic therapy is achieved based on PTT-enhanced gene therapy. In addition, the loading function of chitosan/gold nanoparticles for fluorescence imaging is demonstrated. The current work extends the application of JNPs for imaging-guided synergistic cancer therapy and provides flexible candidates with distinct structures for diverse biomedical applications.


Asunto(s)
Quitosano , Nanopartículas del Metal , Nanopartículas Multifuncionales , Nanopartículas , Técnicas Fotoacústicas , Línea Celular Tumoral , Oro , Humanos , Fototerapia , Terapia Fototérmica
6.
J Am Chem Soc ; 142(47): 20257-20269, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33179921

RESUMEN

Cationic agents, such as ionic liquids (ILs)-based species, have broad-spectrum antibacterial activities. However, the antibacterial mechanisms lack systematic and molecular-level research, especially for Gram-negative bacteria, which have highly organized membrane structures. Here, we designed a series of flexible fluorescent diketopyrrolopyrrole-based ionic liquid derivatives (ILDs) with various molecular sizes (1.95-4.2 nm). The structure-antibacterial activity relationships of the ILDs against Escherichia coli (E. coli) were systematically studied thorough antibacterial tests, fluorescent tracing, morphology analysis, molecular biology, and molecular dynamics (MD) simulations. ILD-6, with a relatively small molecular size, could penetrate through the bacterial membrane, leading to membrane thinning and intracellular activities. ILD-6 showed fast and efficient antimicrobial activity. With the increase of molecular sizes, the corresponding ILDs were proven to intercalate into the bacterial membrane, leading to the destabilization of the lipid bilayer and further contributing to the antimicrobial activities. Moreover, the antibacterial activity of ILD-8 was limited, where the size was not large enough to introduce significant membrane disorder. Relative antibacterial experiments using another common Gram-negative bacteria, Pseudomonas aeruginosa (PAO1), further confirmed the proposed structure-antibacterial activity relationships of ILDs. More impressively, both ILD-6 and ILD-12 displayed significant in vivo therapeutic effects on the PAO1-infected rat model, while ILD-8 performed poorly, which confirmed the antibacterial mechanism of ILDs and proved their potentials for future application. This work clarifies the interactions between molecular sizes of ionic liquid-based species and Gram-negative bacteria and will provide useful guidance for the rational design of high-performance antibacterial agents.

7.
Langmuir ; 36(1): 354-361, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31826611

RESUMEN

The ability to appraise antibacterial potencies of surface-immobilized bactericidal polymers is still a major challenge in the engineering of antibacterial surfaces to combat hospital-acquired (nosocomial) infections. In this work, we fabricated a microfluidic platform with gradiently immobilized bactericidal polymers to enable the rapid appraisal of antibacterial potencies by in situ live/dead staining of bacteria. To this end, a variety of synthetic quaternary polymers, named QPEI-C1, QPEI-C6, QPEI-C8, and QPEI-C10, were gradiently immobilized in microfluidic channels, and their surface densities at different distances along the channels were quantified by using fluorescein-labeled polymers. We found that the surface densities of quaternary polymers could be well-tuned, and the length of the channel, resulting in a 50% reduction of live bacteria (L50), can be used to appraise the antibacterial potency of each bactericidal polymer. For instance, the L50 values of QPEI-C6-, QPEI-C8-, and QPEI-C10-modified channels against Escherichia coli were 35.5, 44.7, and 49.2 mm, respectively, indicating that QPEI-C10 exerted the most potent antibacterial efficacy. More importantly, this microfluidic platform enabled the rapid discrimination of antibacterial potencies of polymers (e.g., QPEI-C8, and QPEI-C10) while the conventional live/dead staining method found no significant difference. This work provides a powerful toolkit by combining advances of microfluidic systems and polymer science for the rapid screening of antibacterial coatings, which would find applications in surface modification of medical devices to combat bacterial infections.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Dispositivos Laboratorio en un Chip , Polietileneimina/farmacología , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Polietileneimina/síntesis química , Polietileneimina/química , Propiedades de Superficie
8.
Biomacromolecules ; 21(2): 732-742, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31756088

RESUMEN

Tunable adhesion of different cell types on well-defined surfaces has attracted common interests in the field of biomaterial science and surface engineering. Herein, we demonstrate a new strategy for the regulation of cell adhesion by simply controlling the thickness of thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) brushes via surface-initiated atom transfer radical polymerization (ATRP). The adhesion of different cell types (4T1, HEK293, H9C2, HUVEC, and L929) can be easily modulated by varying the thickness of PNIPAAm brushes from 5.9 ± 1.0 nm (PN1) to 69.0 ± 5.0 nm (PN6). The fluorescent staining of different cell types on a variety of surfaces reveals that the thickness of PNIPAAm brushes would regulate the assembly of F-actin and the expression of vinculin and fibronectin, which are essential in regulating the adherent status of cells. Moreover, the cellular morphologies revealed that the adherent cells are well-spread, and multiple pseudopod extensions and protrusions can be observed at the margin of cells. This work provides a facile strategy for regulating tunable adhesion of different cell types, which may find applications in tissue engineering and regenerative medicine.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Polimerizacion , Polímeros/química , Polímeros/metabolismo , Animales , Adhesión Celular/fisiología , Células HEK293 , Humanos , Ratones
9.
Small ; 15(20): e1900999, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30957927

RESUMEN

The human society is faced with daunting threats from bacterial infections. Over decades, a variety of antibacterial polymeric nanosystems have exhibited great promise for the eradication of multidrug-resistant bacteria and persistent biofilms by enhancing bacterial recognition and binding capabilities. In this Review, the "state-of-the-art" biodegradable antibacterial polymeric nanosystems, which could respond to bacteria environments (e.g., acidity or bacterial enzymes) for controlled antibiotic release or multimodal antibacterial treatment, are summarized. The current antibacterial polymeric nanosystems can be categorized into antibiotic-containing and intrinsic antibacterial nanosystems. The antibiotic-containing polymeric nanosystems include antibiotic-encapsulated nanocarriers (e.g., polymeric micelles, vesicles, nanogels) and antibiotic-conjugated polymer nanosystems for the delivery of antibiotic drugs. On the other hand, the intrinsic antibacterial polymer nanosystems containing bactericidal moieties such as quaternary ammonium groups, phosphonium groups, polycations, antimicrobial peptides (AMPs), and their synthetic mimics, are also described. The biodegradability of the nanosystems can be rendered by the incorporation of labile chemical linkages, such as carbonate, ester, amide, and phosphoester bonds. The design and synthesis of the degradable polymeric building blocks and their fabrications into nanosystems are also explicated, together with their plausible action mechanisms and potential biomedical applications. The perspectives of the current research in this field are also described.


Asunto(s)
Antibacterianos/farmacología , Materiales Biocompatibles/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Nanopartículas/química , Polímeros/farmacología , Animales , Humanos , Nanopartículas/ultraestructura
10.
Biomacromolecules ; 20(11): 4171-4179, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31596574

RESUMEN

Catheter-related infection is a great challenge to modern medicine, which causes significant economic burden and increases patient morbidity. Hence, there is a great requirement for functionalized surfaces with inherently antibacterial properties and biocompatibility that prevent bacterial colonization and attachment of blood cells. Herein, we developed a strategy for constructing polymer brushes with hierarchical architecture on polyurethane (PU) via surface-initiated atom-transfer radical polymerization (SI-ATRP). Surface-functionalized PU (PU-DMH) was readily prepared, which comprised of poly(3-[dimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azaniumyl]propane-1-sulfonate) (PDMAPS) brushes as the lower layer and antimicrobial peptide-conjugated poly(methacrylic acid) (PMAA) brushes as the upper layer. The PU-DMH surface showed excellent bactericidal property against both Gram-positive and Gram-negative bacteria and could prevent accumulation of bacterial debris on surfaces. Simultaneously, the PU-DMH samples possessed good hemocompatibility and low cytotoxicity. Furthermore, the integrated antifouling and bactericidal properties of PU-DMH under hydrodynamic conditions were confirmed by an in vitro circulating model. The functionalized surface possessed persistent antifouling and bactericidal performances both under static and hydrodynamic conditions. The microbiological and histological results of animal experiments also verified the in vivo anti-infection performance. The present work might find promising clinical applications for preventing catheter-related infection.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Infecciones Relacionadas con Catéteres/prevención & control , Poliuretanos/farmacología , alfa-Defensinas/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Incrustaciones Biológicas , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Infecciones Relacionadas con Catéteres/microbiología , Catéteres/microbiología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/patogenicidad , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/patogenicidad , Humanos , Metacrilatos/química , Polimerizacion , Polímeros/química , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacología , Poliuretanos/química , Propiedades de Superficie
11.
Small ; 14(22): e1800201, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29717807

RESUMEN

One challenge for multimodal therapy is to develop appropriate multifunctional agents to meet the requirements of potential applications. Photodynamic therapy (PDT) is proven to be an effective way to treat cancers. Diverse polycations, such as ethylenediamine-functionalized poly(glycidyl methacrylate) (PGED) with plentiful primary amines, secondary amines, and hydroxyl groups, demonstrate good gene transfection performances. Herein, a series of multifunctional cationic nanoparticles (PRP) consisting of photosensitizer cores and PGED shells are readily developed through simple dopamine-involving processes for versatile bioapplications. A series of experiments demonstrates that PRP nanoparticles are able to effectively mediate gene delivery in different cell lines. PRP nanoparticles are further validated to possess remarkable capability of combined PDT and gene therapy for complementary tumor treatment. In addition, because of their high dispersities in biological matrix, the PRP nanoparticles can also be used for in vitro and in vivo imaging with minimal aggregation-caused quenching. Therefore, such flexible nanoplatforms with photosensitizer cores and polycationic shells are very promising for multimodal tumor therapy with high efficacy.


Asunto(s)
Tecnología Biomédica/métodos , Nanopartículas/química , Fármacos Fotosensibilizantes/farmacología , Animales , Cationes , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , ADN/metabolismo , Compuestos Epoxi/química , Terapia Genética , Humanos , Indoles/química , Metacrilatos/química , Ratones Endogámicos BALB C , Ratones Desnudos , Tamaño de la Partícula , Fotoquimioterapia , Plásmidos/metabolismo , Polímeros/química , Rosa Bengala/química , Oxígeno Singlete/análisis
12.
Biomacromolecules ; 19(6): 1959-1965, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29401373

RESUMEN

Developing of new polymeric materials for the sensitive and rapid detection of trace protein biomarkers has attracted increasing attention in biomedical fields. Herein, series of in situ photoinduced polymer graftings were developed for sensitive detection of protein biomarkers by using featured cascade amplification of liquid crystal (LC) signals. The limit-of-detection (LOD) for native bovine serum albumin (BSA) molecules is around 10 µg/mL in a LC biosensor before signal amplification. Upon the cascade amplification using surface-grafted polymers, poly[poly(ethylene glycol) methacrylate] grafting ( s-P(PEGMA)) exhibits superior amplification ability (104-fold lower than native BSA) than the other two graftings of poly(2-hydroxyethyl methacrylate) ( s-PHEMA) and poly(methacrylic acid) ( s-PMAA; 102-fold lower than native BSA). The contact angles of water and LC on the s-P(PEGMA) grafting show significant difference in comparison with s-PHEMA and s-PMAA graftings ( p < 0.05), implying interfacial energies of the grafted polymers may dictate the orientational transition of LCs. The clinical urine samples collected from the patients with proteinuria were also used to confirm the feasibility of the polymer-amplified LC sensors for practical protein assays. The present work reveals that in situ photoinduced polymer grafting is one promising method to amplify the signals of LC biosensors for the rapid and sensitive detection of trace protein biomarkers.


Asunto(s)
Biomarcadores/análisis , Técnicas Biosensibles/métodos , Cristales Líquidos/química , Polímeros/química , Proteinuria/orina , Biomarcadores/orina , Técnicas Biosensibles/instrumentación , Humanos , Límite de Detección , Metacrilatos/química , Fotoquímica/métodos , Polietilenglicoles/química , Polihidroxietil Metacrilato/química , Polímeros/síntesis química , Proteínas/análisis , Albúmina Sérica Bovina/análisis , Agua/química
13.
Biomacromolecules ; 19(7): 2805-2811, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29727575

RESUMEN

Combating implant-associated infections is an urgent demand due to the increasing numbers in surgical operations such as joint replacements and dental implantations. Surface functionalization of implantable medical devices with polymeric antimicrobial and antifouling agents is an efficient strategy to prevent bacterial fouling and associated infections. In this work, antimicrobial and antifouling branched polymeric agents (GPEG and GEG) were synthesized via ring-opening reaction involving gentamicin and ethylene glycol species. Due to their rich primary amine groups, they can be readily coated on the polydopamine-modified implant (such as titanium) surfaces. The resultant surface coatings of Ti-GPEG and Ti-GEG produce excellent in vitro antibacterial efficacy toward both Staphylococcus aureus and Escherichia coli, while Ti-GPEG exhibit better antifouling ability. Moreover, the infection model with S. aureus shows that implanted Ti-GPEG possessed excellent antibacterial and antifouling ability in vivo. This study would provide a promising strategy for the surface functionalization of implantable medical devices to prevent implant-associated infections.


Asunto(s)
Antiinfecciosos/química , Materiales Biocompatibles Revestidos/química , Infecciones Relacionadas con Prótesis/tratamiento farmacológico , Infecciones Estafilocócicas/tratamiento farmacológico , Animales , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Femenino , Gentamicinas/química , Gentamicinas/farmacología , Ratones , Ratones Endogámicos BALB C , Polietilenglicoles/química , Staphylococcus aureus/efectos de los fármacos , Titanio/química
14.
Macromol Rapid Commun ; 39(20): e1800069, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29855096

RESUMEN

Development of advanced wound dressing materials with rapid healing rates is in urgent demand for wound cares. A suitable microenvironment will promote cell proliferation and migration, which benefits to early wound healing and prevents inflammations and scars. In this work, N-carboxymethyl chitosan- and alginate-based hydrogels are prepared via both electrostatic interaction and divalent chelation with epidermal growth factor (EGF) payload to promote the cell proliferation and wound healing. The dual-crosslinked hydrogels are investigated in terms of rheology, water retention ability, and the release rate of EGF. Moreover, such amorphous hydrogel can promote cell proliferation and accelerate wound healing. The present study demonstrates that dual-crosslinked polysaccharide hydrogels are promising in wound care management.


Asunto(s)
Vendajes , Proliferación Celular/efectos de los fármacos , Hidrogeles/administración & dosificación , Cicatrización de Heridas/efectos de los fármacos , Alginatos/administración & dosificación , Alginatos/química , Animales , Movimiento Celular/efectos de los fármacos , Microambiente Celular/efectos de los fármacos , Quitosano/administración & dosificación , Quitosano/análogos & derivados , Quitosano/química , Cicatriz/microbiología , Cicatriz/prevención & control , Reactivos de Enlaces Cruzados/administración & dosificación , Reactivos de Enlaces Cruzados/química , Factor de Crecimiento Epidérmico/genética , Humanos , Hidrogeles/química , Inflamación/microbiología , Inflamación/prevención & control , Ratones , Polisacáridos/química
15.
Analyst ; 140(1): 340-5, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25386732

RESUMEN

A quantitative protease assay based on the formation of a copper-oligopeptide complex is developed. In this assay, when a tripeptide GGH fragment is cleaved from an oligopeptide chain by serine proteases, the tripeptide quickly forms a pink GGH/Cu(2+) complex whose concentration can be determined quantitatively by using UV-Vis spectroscopy. Therefore, activities of serine proteases can be determined from the formation rate of the GGH/Cu(2+) complex. This principle can be used to detect the presence of serine protease in a real-time manner, or measure proteolytic activities of serine protease cleaving different oligopeptide substrates. For example, by using this assay, we demonstrate that trypsin, a model serine protease, is able to cleave two oligopeptides GGGGKGGH () and GGGGRGGH (). However, the specificity constant (kcat/Km) for is higher than that of (6.4 × 10(3) mM(-1) min(-1)vs. 1.3 × 10(3) mM(-1) min(-1)). This result shows that trypsin is more specific toward arginine (R) than lysine (K) in the oligopeptide sequence.


Asunto(s)
Cobre/química , Oligopéptidos/química , Compuestos Organometálicos/química , Serina Proteasas/análisis , Cobre/metabolismo , Oligopéptidos/metabolismo , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/metabolismo , Serina Proteasas/metabolismo , Espectrofotometría Ultravioleta
16.
Sensors (Basel) ; 15(7): 15661-83, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26147726

RESUMEN

In this paper, a new algorithm to improve the accuracy of estimating diameter at breast height (DBH) for tree trunks in forest areas is proposed. First, the information is collected by a two-dimensional terrestrial laser scanner (2DTLS), which emits laser pulses to generate a point cloud. After extraction and filtration, the laser point clusters of the trunks are obtained, which are optimized by an arithmetic means method. Then, an algebraic circle fitting algorithm in polar form is non-linearly optimized by the Levenberg-Marquardt method to form a new hybrid algorithm, which is used to acquire the diameters and positions of the trees. Compared with previous works, this proposed method improves the accuracy of diameter estimation of trees significantly and effectively reduces the calculation time. Moreover, the experimental results indicate that this method is stable and suitable for the most challenging conditions, which has practical significance in improving the operating efficiency of forest harvester and reducing the risk of causing accidents.

17.
Front Bioeng Biotechnol ; 12: 1454728, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161348

RESUMEN

Jaw cyst is a fluid-containing cystic lesion that can occur in any part of the jaw and cause facial swelling, dental lesions, jaw fractures, and other associated issues. Due to the diversity and complexity of jaw images, existing deep-learning methods still have challenges in segmentation. To this end, we propose MARes-Net, an innovative multi-scale attentional residual network architecture. Firstly, the residual connection is used to optimize the encoder-decoder process, which effectively solves the gradient disappearance problem and improves the training efficiency and optimization ability. Secondly, the scale-aware feature extraction module (SFEM) significantly enhances the network's perceptual abilities by extending its receptive field across various scales, spaces, and channel dimensions. Thirdly, the multi-scale compression excitation module (MCEM) compresses and excites the feature map, and combines it with contextual information to obtain better model performance capabilities. Furthermore, the introduction of the attention gate module marks a significant advancement in refining the feature map output. Finally, rigorous experimentation conducted on the original jaw cyst dataset provided by Quzhou People's Hospital to verify the validity of MARes-Net architecture. The experimental data showed that precision, recall, IoU and F1-score of MARes-Net reached 93.84%, 93.70%, 86.17%, and 93.21%, respectively. Compared with existing models, our MARes-Net shows its unparalleled capabilities in accurately delineating and localizing anatomical structures in the jaw cyst image segmentation.

18.
Adv Mater ; 36(40): e2407927, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39185788

RESUMEN

The combination of nanoparticles and tumor-targeting bacteria for cancer immunotherapy can overcome the shortcomings of poor nanoparticle accumulation, limited penetration, and restricted distribution. However, it remains a great challenge for the hybrid system to improve therapeutic efficacy through the simultaneous and controllable regulation of immune cells and tumor cells. Herein, a hybrid therapeutic platform is rationally designed to achieve immune cascade-augmented cancer immunotherapy. To construct the hybrids, photothermal nanoparticles responsive to light in the second near-infrared (NIR-II) region are conjugated onto the surface of engineered bacteria through pH-responsive Schiff base bonds. Taking advantage of the hypoxia targeting and deep penetration characteristics of the bacteria, the hybrids can accumulate at tumor sites. Then nanoparticles detach from the bacteria to realize genetic engineering of tumor cells, which induces tumor cell apoptosis and down-regulate the expression of programmed cell death ligand 1 to alleviate immunosuppressive tumor microenvironment. The mild photothermal heating can not only induce tumor-associated antigen release, but also trigger sustainable expression of cytokine interleukin-2. Notably, a synergistic antitumor effect is achieved between the process of p53 transfection and NIR-II light-activated genetic engineering of bacteria. This work proposes a facile strategy for the construction of hybrid system to achieve cascade-augmented cancer immunotherapy.


Asunto(s)
Ingeniería Genética , Inmunoterapia , Rayos Infrarrojos , Nanopartículas , Animales , Línea Celular Tumoral , Nanopartículas/química , Ratones , Humanos , Neoplasias/terapia , Apoptosis , Microambiente Tumoral
19.
Mater Today Bio ; 24: 100910, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38204481

RESUMEN

Pelvic organ prolapse (POP) has a high incidence rate among Chinese women. Repeated mechanical stimulation is an important factor causing POP, but the injury mechanism has not yet been elucidated. The purpose of this study is to explore the related mechanisms of pelvic floor supporting tissue damage caused by mechanical force and the application of stem cell therapy. First, we obtained vaginal wall and sacral ligament tissue samples from clinical patients for examination. Pelvic floor support tissues of POP patients displayed high expression of inflammation and immune disorders. Then, we constructed a rat model of childbirth injury. In vivo and in vitro experiments investigated the key mechanism of pelvic floor support tissue injury caused by mechanical force. We discovered that after mechanical force, a large number of reactive oxygen species (ROS) and macrophages rapidly accumulated in pelvic floor tissues. ROS stimulated macrophages to produce NLRP3 inflammatory complex, induced the release of interleukin (IL-1ß) and pyroptosis and exacerbated the inflammatory state of damaged tissues, persisting chronic inflammation of fibroblasts in supporting tissues, thus causing the pelvic floor's extracellular matrix (ECM) collagen metabolic disorder. Resultingly impeding the repair process, thereby causing the onset and progression of the disease. Through their paracrine ability, we discovered that adipose mesenchymal stem cells (ADSCs) could inhibit this series of pathological processes and promote tissue repair, asserting a good therapeutic effect. Simultaneously, to overcome the low cell survival rate and poor therapeutic effect of directly injecting cells, we developed a ROS-responsive PVA@COLI hydrogel with ADSCs. The ROS-scavenging properties of the gel could reshape the site of inflammation injury, enhance cell survival, and play a role in subsequent treatment. The findings of this study could serve as a basis for early, targeted intervention therapy for POP and representing a promising approach.

20.
ACS Appl Mater Interfaces ; 16(10): 12321-12331, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38431875

RESUMEN

Apart from single hemostasis, antibacterial and other functionalities are also desirable for hemostatic materials to meet clinical needs. Cationic materials have attracted great interest for antibacterial/hemostatic applications, and it is still desirable to explore rational structure design to address the challenges in balanced hemostatic/antibacterial/biocompatible properties. In this work, a series of cationic microspheres (QMS) were prepared by the facile surface modification of microporous starch microspheres with a cationic tannic acid derivate, the coating contents of which were adopted for the first optimization of surface structure and property. Thermoresponsive gels with embedded QMS (F-QMS) were further prepared by mixing a neutral thermosensitive polymer and QMS for second structure/function optimization through different QMS and loading contents. In vitro and in vivo results confirmed that the coating content plays a crucial role in the hemostatic/antibacterial/biocompatible properties of QMS, but varied coating contents of QMS only lead to a classical imperfect performance of cationic materials. Inspiringly, the F-QMS-4 gel with an optimal loading content of QMS4 (with the highest coating content) achieved a superior balanced in vitro hemostatic/antibacterial/biocompatible properties, the mechanism of which was revealed as the second regulation of cell-material/protein-material interactions. Moreover, the optimal F-QMS-4 gel exhibited a high hemostatic performance in a femoral artery injury model accompanied by the easy on-demand removal for wound healing endowed by the thermoresponsive transformation. The present work offers a promising approach for the rational design and facile preparation of cationic materials with balanced hemostatic/antibacterial/biocompatible properties.


Asunto(s)
Hemostáticos , Polifenoles , Hemostáticos/farmacología , Hemostáticos/química , Microesferas , Hemostasis , Antibacterianos/farmacología , Antibacterianos/química , Geles/farmacología , Almidón/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA