RESUMEN
BACKGROUND: Astrocytes have recently gained attention as key players in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Numerous differentiation protocols have been developed to study human astrocytes in vitro. However, the properties of the resulting glia are inconsistent, making it difficult to select an appropriate method for a given research question. Therefore, we compared three approaches for the generation of iPSC-derived astrocytes. We performed a detailed analysis using a widely used long serum-free (LSFP) and short serum-free (SSFP) protocol, as well as a TUSP protocol using serum for a limited time of differentiation. RESULTS: We used RNA sequencing and immunochemistry to characterize the cultures. Astrocytes generated by the LSFP and SSFP methods differed significantly in their characteristics from those generated by the TUSP method using serum. The TUSP astrocytes had a less neuronal pattern, showed a higher degree of extracellular matrix formation, and were more mature. The short-term presence of FBS in the medium facilitated the induction of astroglia characteristics but did not result in reactive astrocytes. Data from cell-type deconvolution analysis applied to bulk transcriptomes from the cultures assessed their similarity to primary and fetal human astrocytes. CONCLUSIONS: Overall, our analyses highlight the need to consider the advantages and disadvantages of a given differentiation protocol for solving specific research tasks or drug discovery studies with iPSC-derived astrocytes.
RESUMEN
Prediction of antimicrobial resistance based on whole-genome sequencing data has attracted greater attention due to its rapidity and convenience. Numerous machine learning-based studies have used genetic variants to predict drug resistance in Mycobacterium tuberculosis (MTB), assuming that variants are homogeneous, and most of these studies, however, have ignored the essential correlation between variants and corresponding genes when encoding variants, and used a limited number of variants as prediction input. In this study, taking advantage of genome-wide variants for drug-resistance prediction and inspired by natural language processing, we summarize drug resistance prediction into document classification, in which variants are considered as words, mutated genes in an isolate as sentences, and an isolate as a document. We propose a novel hierarchical attentive neural network model (HANN) that helps discover drug resistance-related genes and variants and acquire more interpretable biological results. It captures the interaction among variants in a mutated gene as well as among mutated genes in an isolate. Our results show that for the four first-line drugs of isoniazid (INH), rifampicin (RIF), ethambutol (EMB) and pyrazinamide (PZA), the HANN achieves the optimal area under the ROC curve of 97.90, 99.05, 96.44 and 95.14% and the optimal sensitivity of 94.63, 96.31, 92.56 and 87.05%, respectively. In addition, without any domain knowledge, the model identifies drug resistance-related genes and variants consistent with those confirmed by previous studies, and more importantly, it discovers one more potential drug-resistance-related gene.
Asunto(s)
Mycobacterium tuberculosis , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Resistencia a Medicamentos , Pruebas de Sensibilidad Microbiana , Mutación , Redes Neurales de la ComputaciónRESUMEN
Alterations in steroid hormone regulation have been implicated in the etiology and progression of autism spectrum disorders (ASD), with the enzyme cytochrome P450 family 11 subfamily A member 1 (CYP11A1)-a key catalyst in cholesterol side-chain cleavage, prominently expressed in the adrenal glands, ovaries, testes, and placenta-standing at the forefront of these investigations. The potential link between aberrations in placental Cyp11a1 expression and the resultant neurodevelopmental disorders, along with the mechanisms underpinning such associations, remains inadequately delineated. In this study, we employed a placental trophoblast-specific Cyp11a1 Hipp11 (H11) knock-in murine model to dissect the phenotypic manifestations within the placenta and progeny, thereby elucidating the underlying mechanistic pathways. Behavioral analyses revealed a diminution in social interaction capabilities alongside an augmented anxiety phenotype, as evidenced by open field and elevated plus maze assessments; both phenotypes were ameliorated after vitamin D3 supplementation. Electrophysiological assays underscored the augmented inhibition of paired-pulse facilitation, indicating impaired neuroplasticity in Cyp11a1 H11-modified mice. An elevation in progesterone concentrations was noted, alongside a significant upregulation of Th1-related cytokines (IL-6 and TNFα) across the plasma, placental, and frontal cortex-a pathological state mitigable through vitamin D3 intervention. Western blotting revealed a vitamin D-mediated rectification of vitamin D receptor and PGC-1α expression dysregulations. Immunofluorescence assays revealed microglial activation in the knock-in model, which was reversible upon vitamin D3 treatment. In conclusion, Cyp11a1 overexpression in the placenta recapitulated an autism-like phenotype in murine models, and vitamin D3 administration effectively ameliorated the resultant neurobehavioral and neuroinflammatory derangements. This study substantiates the application of Cyp11a1 as a biomarker in prenatal diagnostics and posits that prenatal vitamin D3 supplementation is a viable prophylactic measure against perturbations in steroid hormone metabolism associated with ASD pathogenesis.
Asunto(s)
Trastorno del Espectro Autista , Encéfalo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Modelos Animales de Enfermedad , Placenta , Animales , Femenino , Embarazo , Placenta/metabolismo , Ratones , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Encéfalo/metabolismo , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/genética , Vitamina D/metabolismo , Masculino , Trastorno Autístico/metabolismo , Trastorno Autístico/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Progesterona/metabolismo , Técnicas de Sustitución del GenRESUMEN
One of the many unresolved obstacles in the field of cardiovascular research is an uncompromising in vitro cardiac model. While primary cell sources from animal models offer both advantages and disadvantages, efforts over the past half-century have aimed to reduce their use. Additionally, obtaining a sufficient quantity of human primary cardiomyocytes faces ethical and legal challenges. As the practically unlimited source of human cardiomyocytes from induced pluripotent stem cells (hiPSC-CM) is now mostly resolved, there are great efforts to improve their quality and applicability by overcoming their intrinsic limitations. The greatest bottleneck in the field is the in vitro ageing of hiPSC-CMs to reach a maturity status that closely resembles that of the adult heart, thereby allowing for more appropriate drug developmental procedures as there is a clear correlation between ageing and developing cardiovascular diseases. Here, we review the current state-of-the-art techniques in the most realistic heart models used in disease modelling and toxicity evaluations from hiPSC-CM maturation through heart-on-a-chip platforms and in silico models to the in vitro models of certain cardiovascular diseases.
Asunto(s)
Cardiotoxicidad , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Cardiotoxicidad/etiología , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/metabolismo , Animales , Diferenciación Celular , Enfermedades Cardiovasculares , Modelos CardiovascularesRESUMEN
Periconceptional maternal obesity is linked to adverse maternal and neonatal outcomes. Identifying periconceptional biomarkers of pathways affected by maternal obesity can unravel pathophysiologic mechanisms and identify individuals at risk of adverse clinical outcomes. The literature was systematically reviewed to identify periconceptional biomarkers of the endocrine, inflammatory and one-carbon metabolic pathways influenced by maternal obesity. A search was conducted in Embase, Ovid Medline All, Web of Science Core Collection and Cochrane Central Register of Controlled Trials databases, complemented by manual search in PubMed until December 31st, 2020. Eligible studies were those that measured biomarker(s) in relation to maternal obesity, overweight/obesity or body mass index (BMI) during the periconceptional period (14 weeks preconception until 14 weeks post conception). The ErasmusAGE score was used to assess the quality of included studies. Fifty-one articles were included that evaluated over 40 biomarkers. Endocrine biomarkers associated with maternal obesity included leptin, insulin, thyroid stimulating hormone, adiponectin, progesterone, free T4 and human chorionic gonadotropin. C-reactive protein was associated with obesity as part of the inflammatory pathway, while the associated one-carbon metabolism biomarkers were folate and vitamin B12. BMI was positively associated with leptin, C-reactive protein and insulin resistance, and negatively associated with Free T4, progesterone and human chorionic gonadotropin. Concerning the remaining studied biomarkers, strong conclusions could not be established due to limited or contradictory data. Future research should focus on determining the predictive value of the optimal set of biomarkers for their use in clinical settings. The most promising biomarkers include leptin, adiponectin, human chorionic gonadotropin, insulin, progesterone and CRP.
Asunto(s)
Leptina , Obesidad Materna , Recién Nacido , Embarazo , Humanos , Femenino , Proteína C-Reactiva , Adiponectina , Progesterona , Obesidad , Biomarcadores , Insulina , Gonadotropina Coriónica , CarbonoRESUMEN
Transcriptomic analysis is a powerful method in the utilization of New Approach Methods (NAMs) for identifying mechanisms of toxicity and application to hazard characterization. With this regard, mapping toxicological events to time of exposure would be helpful to characterize early events. Here, we investigated time-dependent changes in gene expression levels in iPSC-derived renal proximal tubular-like cells (PTL) treated with five diverse compounds using TempO-Seq transcriptomics with the aims to evaluate the application of PTL for toxicity prediction and to report on temporal effects for the activation of cellular stress response pathways. PTL were treated with either 50 µM amiodarone, 10 µM sodium arsenate, 5 nM rotenone, or 300 nM tunicamycin over a temporal time course between 1 and 24 h. The TGFß-type I receptor kinase inhibitor GW788388 (1 µM) was used as a negative control. Pathway analysis revealed the induction of key stress-response pathways, including Nrf2 oxidative stress response, unfolding protein response, and metal stress response. Early response genes per pathway were identified much earlier than 24 h and included HMOX1, ATF3, DDIT3, and several MT1 isotypes. GW788388 did not induce any genes within the stress response pathways above, but showed deregulation of genes involved in TGFß inhibition, including downregulation of CYP24A1 and SERPINE1 and upregulation of WT1. This study highlights the application of iPSC-derived renal cells for prediction of cellular toxicity and sheds new light on the temporal and early effects of key genes that are involved in cellular stress response pathways.
Asunto(s)
Células Madre Pluripotentes Inducidas , Transcriptoma , Perfilación de la Expresión Génica , RiñónRESUMEN
Environmental or occupational exposure of humans to trichloroethylene (TCE) has been associated with different extrahepatic toxic effects, including nephrotoxicity and neurotoxicity. Bioactivation of TCE via the glutathione (GSH) conjugation pathway has been proposed as underlying mechanism, although only few mechanistic studies have used cell models of human origin. In this study, six human derived cell models were evaluated as in vitro models representing potential target tissues of TCE-conjugates: RPTEC/TERT1 (kidney), HepaRG (liver), HUVEC/TERT2 (vascular endothelial), LUHMES (neuronal, dopaminergic), human induced pluripotent stem cells (hiPSC) derived peripheral neurons (UKN5) and hiPSC-derived differentiated brain cortical cultures containing all subtypes of neurons and astrocytes (BCC42). A high throughput transcriptomic screening, utilizing mRNA templated oligo-sequencing (TempO-Seq), was used to study transcriptomic effects after exposure to TCE-conjugates. Cells were exposed to a wide range of concentrations of S-(1,2-trans-dichlorovinyl)glutathione (1,2-DCVG), S-(1,2-trans-dichlorovinyl)-L-cysteine (1,2-DCVC), S-(2,2-dichlorovinyl)glutathione (2,2-DCVG), and S-(2,2-dichlorovinyl)-L-cysteine (2,2-DCVC). 1,2-DCVC caused stress responses belonging to the Nrf2 pathway and Unfolded protein response in all the tested models but to different extents. The renal model was the most sensitive model to both 1,2-DCVC and 1,2-DCVG, with an early Nrf2-response at 3 µM and hundreds of differentially expressed genes at higher concentrations. Exposure to 2,2-DCVG and 2,2-DCVC also resulted in the upregulation of Nrf2 pathway genes in RPTEC/TERT1 although at higher concentrations. Of the three neuronal models, both the LUHMES and BCC42 showed significant Nrf2-responses and at higher concentration UPR-responses, supporting recent hypotheses that 1,2-DCVC may be involved in neurotoxic effects of TCE. The cell models with the highest expression of γ-glutamyltransferase (GGT) enzymes, showed cellular responses to both 1,2-DCVG and 1,2-DCVC. Little to no effects were found in the neuronal models from 1,2-DCVG exposure due to their low GGT-expression. This study expands our knowledge on tissue specificity of TCE S-conjugates and emphasizes the value of human cell models together with transcriptomics for such mechanistic studies.
Asunto(s)
Células Madre Pluripotentes Inducidas , Tricloroetileno , Humanos , Cisteína/toxicidad , Cisteína/metabolismo , Tricloroetileno/toxicidad , Tricloroetileno/metabolismo , Transcriptoma , Factor 2 Relacionado con NF-E2/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Glutatión/metabolismo , FenotipoRESUMEN
BACKGROUND: Lifestyle behaviors during the periconception period contribute to achievement of a successful pregnancy. Assessment of attitudes and practices toward these modifiable behaviors can aid in identifying gaps in unhealthy lifestyle behaviors with impact on intervention effectiveness. OBJECTIVE: This study investigates the effectiveness of coaching by the eHealth program Smarter Pregnancy during the periconception period on improvement of attitudes and practices toward fruit and vegetable intake and smoking in women attempting pregnancy through assisted reproductive technology (ART) or natural conception. METHODS: Women attempting pregnancy through ART (n=1060) or natural conception (n=631) were selected during the periconception period. The intervention groups, conceived through ART or naturally, received Smarter Pregnancy coaching for 24 weeks, whereas the control group conceived through ART and did not receive coaching. Attitudes and practices at baseline and follow-up periods were obtained from self-administered online questionnaire provided by the program. Attitudes were assessed in women with unhealthy behaviors as their intention to increase their fruit and vegetable intake and to quit smoking using a yes/no question. Outcomes on practices, suggesting effectiveness, included daily fruit (pieces) and vegetable (grams) intake, and if women smoked (yes/no). Changes in attitudes and practices were compared at 12 and 24 weeks with baseline between the ART intervention and ART control groups, and within the intervention groups between ART and natural conception. Changes in practices at 12 and 24 weeks were also compared with baseline between women with negative attitude and positive attitude within the intervention groups: ART and natural conception. Analysis was performed using linear and logistic regression models adjusted for maternal confounders and baseline attitudes and practices. RESULTS: The ART intervention group showed higher vegetable intake and lower odds for negative attitudes toward vegetable intake after 12 weeks (ßadj=25.72 g, P<.001; adjusted odds ratio [ORadj] 0.24, P<.001) and 24 weeks of coaching (ßadj=23.84 g, P<.001; ORadj 0.28, P<.001) compared with ART controls. No statistically significant effect was observed on attitudes and practices toward fruit intake (12 weeks: P=.16 and .08, respectively; 24 weeks: P=.16 and .08, respectively) and smoking behavior (12 weeks: P=.87; 24 weeks: P=.92). No difference was observed for the studied attitudes and practices between the ART intervention and natural conception intervention groups. Women with persistent negative attitude toward fruit and vegetable intake at week 12 showed lower fruit and vegetable intake at week 24 compared with women with positive attitude (ßadj=-.49, P<.001; ßadj=-30.07, P<.001, respectively). CONCLUSIONS: The eHealth Smarter Pregnancy program may improve vegetable intake-related attitudes and practices in women undergoing ART treatment. Women with no intention to increase fruit and vegetable intake had less improvement in their intakes. Despite small changes, this study demonstrates again that Smarter Pregnancy can be used to improve vegetable intake, which can complemented by blended care that combines face-to-face and online care to also improve fruit intake and smoking behavior.
Asunto(s)
Tutoría , Telemedicina , Embarazo , Humanos , Femenino , Estudios Prospectivos , Estilo de Vida , Frutas , VerdurasRESUMEN
BACKGROUND: Islet xenotransplantation is a promising concept for beta-cell replacement therapy. Reporter genes for noninvasive monitoring of islet engraftment, graft mass changes, long-term survival, and graft failure support the optimization of transplantation strategies. Near-infrared fluorescent protein (iRFP) is ideal for fluorescence imaging (FI) in tissue, but also for multispectral optoacoustic tomography (MSOT) with an even higher imaging depth. Therefore, we generated reporter pigs ubiquitously expressing iRFP. METHODS: CAG-iRPF720 transgenic reporter pigs were generated by somatic cell nuclear transfer from FACS-selected stable transfected donor cells. Neonatal pig islets (NPIs) were transplanted into streptozotocin-diabetic immunodeficient NOD-scid IL2Rgnull (NSG) mice. FI and MSOT were performed to visualize different numbers of NPIs and to evaluate associations between signal intensity and glycemia. MSOT was also tested in a large animal model. RESULTS: CAG-iRFP transgenic NPIs were functionally equivalent with wild-type NPIs. Four weeks after transplantation under the kidney capsule, FI revealed a twofold higher signal for 4000-NPI compared to 1000-NPI grafts. Ten weeks after transplantation, the fluorescence intensity of the 4000-NPI graft was inversely correlated with glycemia. After intramuscular transplantation into diabetic NSG mice, MSOT revealed clear dose-dependent signals for grafts of 750, 1500, and 3000 NPIs. Dose-dependent MSOT signals were also revealed in a pig model, with stronger signals after subcutaneous (depth â¼6 mm) than after submuscular (depth â¼15 mm) placement of the NPIs. CONCLUSIONS: Islets from CAG-iRFP transgenic pigs are fully functional and accessible to long-term monitoring by state-of-the-art imaging modalities. The novel reporter pigs will support the development and preclinical testing of novel matrices and engraftment strategies for porcine xeno-islets.
Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Animales Modificados Genéticamente , Glucemia , Xenoinjertos , Trasplante de Islotes Pancreáticos/métodos , Ratones , Ratones Endogámicos NOD , Proteína Estafilocócica A , Porcinos , Trasplante Heterólogo/métodosRESUMEN
The Sleeping Beauty (SB) transposon is an advanced tool for genetic engineering and a useful model to investigate cut-and-paste DNA transposition in vertebrate cells. Here, we identify novel SB transposase mutants that display efficient and canonical excision but practically unmeasurable genomic re-integration. Based on phylogenetic analyses, we establish compensating amino acid replacements that fully rescue the integration defect of these mutants, suggesting epistasis between these amino acid residues. We further show that the transposons excised by the exc+/int- transposase mutants form extrachromosomal circles that cannot undergo a further round of transposition, thereby representing dead-end products of the excision reaction. Finally, we demonstrate the utility of the exc+/int- transposase in cassette removal for the generation of reprogramming factor-free induced pluripotent stem cells. Lack of genomic integration and formation of transposon circles following excision is reminiscent of signal sequence removal during V(D)J recombination, and implies that cut-and-paste DNA transposition can be converted to a unidirectional process by a single amino acid change.
Asunto(s)
Reprogramación Celular , Elementos Transponibles de ADN , Células Madre Pluripotentes Inducidas/metabolismo , Transposasas/genética , Sustitución de Aminoácidos , Animales , Epistasis Genética , Ingeniería Genética/métodos , Células HeLa , Células Hep G2 , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Mutación , Transposasas/metabolismoRESUMEN
From the first success in cultivation of cells in vitro, it became clear that developing cell and/or tissue specific cultures would open a myriad of new opportunities for medical research. Expertise in various in vitro models has been developing over decades, so nowadays we benefit from highly specific in vitro systems imitating every organ of the human body. Moreover, obtaining sufficient number of standardized cells allows for cell transplantation approach with the goal of improving the regeneration of injured/disease affected tissue. However, different cell types bring different needs and place various types of hurdles on the path of regenerative neurology and regenerative cardiology. In this review, written by European experts gathered in Cost European action dedicated to neurology and cardiology-Bioneca, we present the experience acquired by working on two rather different organs: the brain and the heart. When taken into account that diseases of these two organs, mostly ischemic in their nature (stroke and heart infarction), bring by far the largest burden of the medical systems around Europe, it is not surprising that in vitro models of nervous and heart muscle tissue were in the focus of biomedical research in the last decades. In this review we describe and discuss hurdles which still impair further progress of regenerative neurology and cardiology and we detect those ones which are common to both fields and some, which are field-specific. With the goal to elucidate strategies which might be shared between regenerative neurology and cardiology we discuss methodological solutions which can help each of the fields to accelerate their development.
Asunto(s)
Regeneración Tisular Dirigida , Miocardio , Regeneración Nerviosa , Medicina Regenerativa , Animales , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Encefalopatías/diagnóstico , Encefalopatías/etiología , Encefalopatías/terapia , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Manejo de la Enfermedad , Vesículas Extracelulares/metabolismo , Regeneración Tisular Dirigida/métodos , Cardiopatías/diagnóstico , Cardiopatías/etiología , Cardiopatías/terapia , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Organoides , Medicina Regenerativa/métodos , Trasplante de Células Madre/efectos adversos , Trasplante de Células Madre/métodos , Células Madre/citología , Células Madre/metabolismoRESUMEN
Tagging of endogenous stress response genes can provide valuable in vitro models for chemical safety assessment. Here, we present the generation and application of a fluorescent human induced pluripotent stem cell (hiPSC) reporter line for Heme oxygenase-1 (HMOX1), which is considered a sensitive and reliable biomarker for the oxidative stress response. CRISPR/Cas9 technology was used to insert an enhanced green fluorescent protein (eGFP) at the C-terminal end of the endogenous HMOX1 gene. Individual clones were selected and extensively characterized to confirm precise editing and retained stem cell properties. Bardoxolone-methyl (CDDO-Me) induced oxidative stress caused similarly increased expression of both the wild-type and eGFP-tagged HMOX1 at the mRNA and protein level. Fluorescently tagged hiPSC-derived proximal tubule-like, hepatocyte-like, cardiomyocyte-like and neuron-like progenies were treated with CDDO-Me (5.62-1000 nM) or diethyl maleate (5.62-1000 µM) for 24 h and 72 h. Multi-lineage oxidative stress responses were assessed through transcriptomics analysis, and HMOX1-eGFP reporter expression was carefully monitored using live-cell confocal imaging. We found that eGFP intensity increased in a dose-dependent manner with dynamics varying amongst lineages and stressors. Point of departure modelling further captured the specific lineage sensitivities towards oxidative stress. We anticipate that the newly developed HMOX1 hiPSC reporter will become a valuable tool in understanding and quantifying critical target organ cell-specific oxidative stress responses induced by (newly developed) chemical entities.
Asunto(s)
Hemo-Oxigenasa 1/genética , Células Madre Pluripotentes Inducidas/citología , Estrés Oxidativo/efectos de los fármacos , Sistemas CRISPR-Cas/genética , Diferenciación Celular , Células Cultivadas , Relación Dosis-Respuesta a Droga , Proteínas Fluorescentes Verdes/genética , Humanos , Masculino , Maleatos/administración & dosificación , Maleatos/toxicidad , Persona de Mediana Edad , Ácido Oleanólico/administración & dosificación , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/toxicidad , ARN Mensajero/genética , Factores de TiempoRESUMEN
Neurotrophin receptors such as the tropomyosin receptor kinase A receptor (TrkA) and the low-affinity binding p75 neurotrophin receptor p75NTR play a critical role in neuronal survival and their functions are altered in Alzheimer's disease (AD). Changes in the dynamics of receptors on the plasma membrane are essential to receptor function. However, whether receptor dynamics are affected in different pathophysiological conditions is unexplored. Using live-cell single-molecule imaging, we examined the surface trafficking of TrkA and p75NTR molecules on live neurons that were derived from human-induced pluripotent stem cells (hiPSCs) of presenilin 1 (PSEN1) mutant familial AD (fAD) patients and non-demented control subjects. Our results show that the surface movement of TrkA and p75NTR and the activation of TrkA- and p75NTR-related phosphoinositide-3-kinase (PI3K)/serine/threonine-protein kinase (AKT) signaling pathways are altered in neurons that are derived from patients suffering from fAD compared to controls. These results provide evidence for altered surface movement of receptors in AD and highlight the importance of investigating receptor dynamics in disease conditions. Uncovering these mechanisms might enable novel therapies for AD.
Asunto(s)
Enfermedad de Alzheimer/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Presenilina-1/genética , Receptor trkA/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Adulto , Enfermedad de Alzheimer/metabolismo , Animales , Supervivencia Celular , Células Cultivadas , Femenino , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Persona de Mediana Edad , Mutación , Neuronas/metabolismo , Células PC12 , Ratas , Transducción de Señal , Imagen Individual de MoléculaRESUMEN
Mucopolysaccharidosis II (MPS II) is a lysosomal storage disorder (LSD), caused by iduronate 2-sulphatase (IDS) enzyme dysfunction. The neuropathology of the disease is not well understood, although the neural symptoms are currently incurable. MPS II-patient derived iPSC lines were established and differentiated to neuronal lineage. The disease phenotype was confirmed by IDS enzyme and glycosaminoglycan assay. MPS II neuronal precursor cells (NPCs) showed significantly decreased self-renewal capacity, while their cortical neuronal differentiation potential was not affected. Major structural alterations in the ER and Golgi complex, accumulation of storage vacuoles, and increased apoptosis were observed both at protein expression and ultrastructural level in the MPS II neuronal cells, which was more pronounced in GFAP + astrocytes, with increased LAMP2 expression but unchanged in their RAB7 compartment. Based on these finding we hypothesize that lysosomal membrane protein (LMP) carrier vesicles have an initiating role in the formation of storage vacuoles leading to impaired lysosomal function. In conclusion, a novel human MPS II disease model was established for the first time which recapitulates the in vitro neuropathology of the disorder, providing novel information on the disease mechanism which allows better understanding of further lysosomal storage disorders and facilitates drug testing and gene therapy approaches.
Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Lisosomas/metabolismo , Modelos Biológicos , Mucopolisacaridosis II/metabolismo , Diferenciación Celular , Células Cultivadas , Citometría de Flujo , Humanos , Células Madre Pluripotentes Inducidas/patología , Mucopolisacaridosis II/patologíaRESUMEN
Hazard assessment, based on new approach methods (NAM), requires the use of batteries of assays, where individual tests may be contributed by different laboratories. A unified strategy for such collaborative testing is presented. It details all procedures required to allow test information to be usable for integrated hazard assessment, strategic project decisions and/or for regulatory purposes. The EU-ToxRisk project developed a strategy to provide regulatorily valid data, and exemplified this using a panel of > 20 assays (with > 50 individual endpoints), each exposed to 19 well-known test compounds (e.g. rotenone, colchicine, mercury, paracetamol, rifampicine, paraquat, taxol). Examples of strategy implementation are provided for all aspects required to ensure data validity: (i) documentation of test methods in a publicly accessible database; (ii) deposition of standard operating procedures (SOP) at the European Union DB-ALM repository; (iii) test readiness scoring accoding to defined criteria; (iv) disclosure of the pipeline for data processing; (v) link of uncertainty measures and metadata to the data; (vi) definition of test chemicals, their handling and their behavior in test media; (vii) specification of the test purpose and overall evaluation plans. Moreover, data generation was exemplified by providing results from 25 reporter assays. A complete evaluation of the entire test battery will be described elsewhere. A major learning from the retrospective analysis of this large testing project was the need for thorough definitions of the above strategy aspects, ideally in form of a study pre-registration, to allow adequate interpretation of the data and to ensure overall scientific/toxicological validity.
Asunto(s)
Documentación , Procesamiento Automatizado de Datos/legislación & jurisprudencia , Regulación Gubernamental , Pruebas de Toxicidad , Toxicología/legislación & jurisprudencia , Animales , Células Cultivadas , Europa (Continente) , Humanos , Formulación de Políticas , Reproducibilidad de los Resultados , Estudios Retrospectivos , Medición de Riesgo , Terminología como Asunto , Pez Cebra/embriologíaRESUMEN
Changes to the spatial organization of specific chromatin domains such as constitutive heterochromatin have been studied extensively in somatic cells. During early embryonic development, drastic epigenetic reprogramming of both the maternal and paternal genomes, followed by chromatin remodeling at the time of embryonic genome activation (EGA), have been observed in the mouse. Very few studies have been performed in other mammalian species (human, bovine, or rabbit) and the data are far from complete. During this work, we studied the three-dimensional organization of pericentromeric regions during the preimplantation period in the rabbit using specific techniques (3D-FISH) and tools (semi-automated image analysis). We observed that the pericentromeric regions (identified with specific probes for Rsat I and Rsat II genomic sequences) changed their shapes (from pearl necklaces to clusters), their nuclear localizations (from central to peripheral), as from the 4-cell stage. This reorganization goes along with histone modification changes and reduced amount of interactions with nucleolar precursor body surface. Altogether, our results suggest that the 4-cell stage may be a crucial window for events necessary before major EGA, which occurs during the 8-cell stage in the rabbit.
Asunto(s)
Núcleo Celular/genética , Desarrollo Embrionario/genética , Heterocromatina/genética , Animales , Núcleo Celular/metabolismo , Centrómero/genética , Centrómero/metabolismo , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Femenino , Heterocromatina/metabolismo , Hibridación Fluorescente in Situ , Microscopía Fluorescente , ConejosRESUMEN
Application of dendritic cells (DCs) to prime responses to tumor Ags provides a promising approach to immunotherapy. However, only a limited number of DCs can be manufactured from adult precursors. In contrast, pluripotent embryonic stem (ES) cells represent an inexhaustible source for DC production, although it remains a major challenge to steer directional differentiation because ES cell-derived cells are typically immature with impaired functional capacity. Consistent with this notion, we found that mouse ES cell-derived DCs (ES-DCs) represented less mature cells compared with bone marrow-derived DCs. This finding prompted us to compare the gene expression profile of the ES cell- and adult progenitor-derived, GM-CSF-instructed, nonconventional DC subsets. We quantified the mRNA level of 17 DC-specific transcription factors and observed that 3 transcriptional regulators (Irf4, Spi-B, and Runx3) showed lower expression in ES-DCs than in bone marrow-derived DCs. In light of this altered gene expression, we probed the effects of these transcription factors in developing mouse ES-DCs with an isogenic expression screen. Our analysis revealed that forced expression of Irf4 repressed ES-DC development, whereas, in contrast, Runx3 improved the ES-DC maturation capacity. Moreover, LPS-treated and Runx3-activated ES-DCs exhibited enhanced T cell activation and migratory potential. In summary, we found that ex vivo-generated ES-DCs had a compromised maturation ability and immunogenicity. However, ectopic expression of Runx3 enhances cytokine-driven ES-DC development and acts as an instructive tool for the generation of mature DCs with enhanced immunogenicity from pluripotent stem cells.
Asunto(s)
Diferenciación Celular/fisiología , Subunidad alfa 3 del Factor de Unión al Sitio Principal/biosíntesis , Células Dendríticas/citología , Expresión Génica Ectópica/fisiología , Células Madre Embrionarias/citología , Animales , Western Blotting , Separación Celular , Células Cultivadas , Subunidad alfa 3 del Factor de Unión al Sitio Principal/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Madre Embrionarias/inmunología , Células Madre Embrionarias/metabolismo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/inmunología , Células Madre Pluripotentes/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , TranscriptomaRESUMEN
The calcium sensing receptor (CaSR) was first identified in parathyroid glands, and its primary role in controlling systemic calcium homeostasis by the regulation of parathyroid hormone (PTH) secretion has been extensively described in literature. Additionally, the receptor has also been investigated in cells and tissues not directly involved in calcium homeostasis, e.g., the nervous system (NS), where it plays crucial roles in early neural development for the differentiation of neurons and glial cells, as well as in the adult nervous system for synaptic transmission and plasticity. Advances in the knowledge of the CaSR's function in such physiological processes have encouraged researchers to further broaden the receptor's investigation in the neuro-pathological conditions of the NS. Interestingly, pre-clinical data suggest that receptor inhibition by calcilytics might be effective in counteracting the pathomechanism underlying Alzheimer's disease and ischemia, while a CaSR positive modulation with calcimimetics has been proposed as a potential approach for treating neuroblastoma. Importantly, such promising findings led to the repurposing of CaSR modulators as novel pharmacological alternatives for these disorders. Therefore, the aim of this review article is to critically appraise evidence which, so far, has been yielded from the investigation of the role of the CaSR in physiology of the nervous system and to focus on the most recent emerging concepts which have reported the receptor as a therapeutic target for neurodegeneration and neuroblastic tumors.
Asunto(s)
Susceptibilidad a Enfermedades , Fenómenos Fisiológicos del Sistema Nervioso , Sistema Nervioso/metabolismo , Receptores Sensibles al Calcio/metabolismo , Factores de Edad , Animales , Calcio/metabolismo , Diferenciación Celular/genética , Humanos , Terapia Molecular Dirigida , Sistema Nervioso/efectos de los fármacos , Sistema Nervioso/embriología , Neurogénesis/genética , Receptores Sensibles al Calcio/genética , Transducción de SeñalRESUMEN
The genetic alphabet consists of the four letters: C, A, G, and T in DNA and C,A,G, and U in RNA. Triplets of these four letters jointly encode 20 different amino acids out of which proteins of all organisms are built. This system is universal and is found in all kingdoms of life. However, bases in DNA and RNA can be chemically modified. In DNA, around 10 different modifications are known, and those have been studied intensively over the past 20 years. Scientific studies on DNA modifications and proteins that recognize them gave rise to the large field of epigenetic and epigenomic research. The outcome of this intense research field is the discovery that development, ageing, and stem-cell dependent regeneration but also several diseases including cancer are largely controlled by the epigenetic state of cells. Consequently, this research has already led to the first FDA approved drugs that exploit the gained knowledge to combat disease. In recent years, the ~150 modifications found in RNA have come to the focus of intense research. Here we provide a perspective on necessary and expected developments in the fast expanding area of RNA modifications, termed epitranscriptomics.
Asunto(s)
ADN de Neoplasias , Epigénesis Genética , Epigenómica/normas , Perfilación de la Expresión Génica/normas , Regulación Neoplásica de la Expresión Génica , Neoplasias , ARN Neoplásico , Transcriptoma , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Europa (Continente) , Perfilación de la Expresión Génica/métodos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismoRESUMEN
Osteoarthritis (OA) is the most common chronic disabling condition effecting the elderly, significantly impacting an individual patient's quality of life. Current treatment options for OA are focused on pain management and slowing degradation of cartilage. Some modern surgical techniques aimed at encouraging regeneration at defect sites have met with limited long-term success. Mesenchymal stem cells (MSCs) have been viewed recently as a potential tool in OA repair due to their chondrogenic capacity. Several studies have shown success with regards to reducing patient's OA-related pain and discomfort but have been less successful in inducing chondrocyte regeneration. The heterogeneity of MSCs and their limited proliferation capacity also raises issues when developing an off-the-shelf treatment for OA. Induced pluripotent stem cell (iPSC) technology, which allows for the easy production of cells capable of prolonged self-renewal and producing any somatic cell type, may overcome those limitations. Patient derived iPSCs can also be used to gain new insight into heredity-related OA. Efforts to generate chondrocytes from iPSCs through embryoid bodies or mesenchymal intermediate stages have struggled to produce with optimal functional characteristics. However, iPSCs potential to produce cells for future OA therapies has been supported by iPSC-derived teratomas, which have shown an ability to produce functional, stable articular cartilage. Other iPSCs-chondrogenic protocols are also improving by incorporating tissue engineering techniques to better mimic developmental conditions.