Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Dermatol ; 31(2): 143-153, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34331820

RESUMEN

The mammalian target of rapamycin inhibitor (mTOR-I) Rapamycin, a drug widely used in kidney transplantation, exerts important anti-cancer effects, particularly in Kaposi's Sarcoma (KS), through several biological interactions. In this in vivo and in vitro study, we explored whether the activation of the autophagic pathway through the low-affinity receptor for nerve growth factor, p75NTR , may have a pivotal role in the anti-cancer effect exerted by Rapamycin in S. Our Kimmunohistochemistry results revealed a significant hyper-activation of the autophagic pathway in KS lesions. In vitro experiments on KS cell lines showed that Rapamycin exposure reduced cell viability by increasing the autophagic process, in the absence of apoptosis, through the transcriptional activation of p75NTR via EGR1. Interestingly, p75NTR gene silencing prevented the increase of the autophagic process and the reduction of cell viability. Moreover, p75NTR activation promoted the upregulation of phosphatase and tensin homolog (PTEN), a tumour suppressor that modulates the PI3K/Akt/mTOR pathway. In conclusion, our in vitro data demonstrated, for the first time, that in Kaposi's sarcoma, autophagy triggered by Rapamycin through p75NTR represented a major mechanism by which mTOR inhibitors may induce tumour regression. Additionally, it suggested that p75NTR protein analysis could be proposed as a new potential biomarker to predict response to Rapamycin in kidney transplant recipients affected by Kaposi's sarcoma.


Asunto(s)
Sarcoma de Kaposi , Sirolimus , Apoptosis , Autofagia , Humanos , Fosfatidilinositol 3-Quinasas , Sarcoma de Kaposi/patología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
2.
Am J Transplant ; 21(2): 838-845, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33091234

RESUMEN

IgA nephropathy (IgAN) is a frequent cause of chronic kidney disease (CKD) and progressive renal impairment. A native renal biopsy diagnosis of IgAN is a predictor of graft loss, with a relative risk of 47% but it is difficult to predict graft survival and progressive allograft dysfunction in these patients. Deletion of complement factor H-related genes 1 and 3 (delCFHR3-1) has been associated with a decreased risk of developing IgAN on native kidneys, but the impact on the graft in IgAN-transplanted patients is unknown. We hypothesized that delCFHR3-1 is also associated with the processes that influence graft survival in transplant recipients with IgAN and tested whether cellular senescence is involved in mediating graft damage. We found that patients carrying two copies of CFHR1-3 had a worse outcome (P = .000321) and presented increased FHR1 deposits at glomerular and tubulointerstitial level associated with higher expression of the senescence marker p16INK4a (P = .001) and tubulointerstitial fibrosis (P = .005). Interestingly, FHR1 deposits were associated with increased complement activation as demonstrated by C5b-9 deposits. These data support both the role of FHR1 in mediating complement activation and tubular senescence, and suggest the possibility of genotyping delCFHR3-1 to predict graft survival in IgAN-transplanted patients.


Asunto(s)
Glomerulonefritis por IGA , Trasplante de Riñón , Senescencia Celular , Supervivencia de Injerto , Humanos , Riñón , Trasplante de Riñón/efectos adversos
3.
Nephrol Dial Transplant ; 36(3): 452-464, 2021 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-33200215

RESUMEN

BACKGROUND: Immunoglobulin A nephropathy (IgAN) is the most frequent primary glomerulonephritis. The role of the microbiota and mucosal immunity in the pathogenesis of IgAN remains a key element. To date, the hypothetical relationship between commensal bacteria, elevated tumour necrosis factor (TNF) superfamily member 13 [also known as B-cell activating factor (BAFF)] levels, perturbed homoeostasis of intestinal-activated B cells and intestinal IgA class switch has not been clearly shown in IgAN patients. METHODS: We studied the intestinal-renal axis connections, analysing levels of BAFF, TNF ligand superfamily member 13 (APRIL) and intestinal-activated B cells in IgAN patients, healthy subjects (HSs) and patients with non-IgA glomerulonephritides. RESULTS: IgAN patients had increased serum levels of BAFF cytokine, correlating with higher amounts of five specific microbiota metabolites, and high APRIL cytokine serum levels. We also found that subjects with IgAN have a higher level of circulating gut-homing (CCR9+ ß7 integrin+) regultory B cells, memory B cells and IgA+ memory B cells compared with HSs. Finally, we found that IgAN patients had high levels of both total plasmablasts (PBs) and intestinal-homing PBs. Interestingly, PBs significantly increased in IgAN but not in patients with other glomerulonephritides. CONCLUSIONS: Our results demonstrate a significant difference in the amount of intestinal-activated B lymphocytes between IgAN patients and HSs, confirming the hypothesis of the pathogenic role of intestinal mucosal hyperresponsiveness in IgAN. The intestinal-renal axis plays a crucial role in IgAN and several factors may contribute to its complex pathogenesis and provide an important area of research for novel targeted therapies to modulate progression of the disease.


Asunto(s)
Linfocitos B/inmunología , Microbioma Gastrointestinal/inmunología , Glomerulonefritis por IGA/complicaciones , Inmunidad Mucosa/inmunología , Inmunoglobulina A/sangre , Inflamación/patología , Mucosa Intestinal/inmunología , Adulto , Linfocitos B/metabolismo , Linfocitos B/patología , Estudios de Casos y Controles , Citocinas/metabolismo , Femenino , Humanos , Inflamación/etiología , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Persona de Mediana Edad
4.
Int J Mol Sci ; 22(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34068941

RESUMEN

Diabetic nephropathy (DN) is the most frequent cause of end-stage renal disease. Tubulointerstitial accumulation of lysine 63 (K63)-ubiquitinated (Ub) proteins is involved in the progression of DN fibrosis and correlates with urinary miR-27b-3p downregulation. We explored the renoprotective effect of an inhibitor of K63-Ub (NSC697923), alone or in combination with the ACE-inhibitor ramipril, in vitro and in vivo. Proximal tubular epithelial cells and diabetic DBA/2J mice were treated with NSC697923 and/or ramipril. K63-Ub protein accumulation along with α-SMA, collagen I and III, FSP-1, vimentin, p16INK4A expression, SA-α Gal staining, Sirius Red, and PAS staining were measured. Finally, we measured the urinary albumin to creatinine ratio (uACR), and urinary miR-27b-3p expression in mice. NSC697923, both alone and in association with ramipril, in vitro and in vivo inhibited hyperglycemia-induced epithelial to mesenchymal transition by significantly reducing K63-Ub proteins, α-SMA, collagen I, vimentin, FSP-1 expression, and collagen III along with tubulointerstitial and glomerular fibrosis. Treated mice also showed recovery of urinary miR-27b-3p and restored expression of p16INK4A. Moreover, NSC697923 in combination with ramipril demonstrated a trend in the reduction of uACR. In conclusion, we suggest that selective inhibition of K63-Ub, when combined with the conventional treatment with ACE inhibitors, might represent a novel treatment strategy to prevent the progression of fibrosis and proteinuria in diabetic nephropathy and we propose miR-27b-3p as a biomarker of treatment efficacy.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/prevención & control , Fibrosis/prevención & control , Lisina/química , Nitrofuranos/farmacología , Ramipril/farmacología , Sulfonas/farmacología , Ubiquitinación , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Quimioterapia Combinada , Femenino , Fibrosis/etiología , Fibrosis/metabolismo , Fibrosis/patología , Ratones , Ratones Endogámicos DBA
5.
FASEB J ; 33(10): 10753-10766, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31268775

RESUMEN

Endothelial dysfunction is a hallmark of LPS-induced acute kidney injury (AKI). Endothelial cells (ECs) acquired a fibroblast-like phenotype and contributed to myofibroblast generation through the endothelial-to-mesenchymal transition (EndMT) process. Of note, human adult renal stem/progenitor cells (ARPCs) enhance the tubular regenerative mechanism during AKI but little is known about their effects on ECs. Following LPS exposure, ECs proliferated, decreased EC markers CD31 and vascular endothelial cadherin, and up-regulated myofibroblast markers, collagen I, and vimentin. The coculture with ARPCs normalized the EC proliferation rate and abrogated the LPS-induced EndMT. The gene expression analysis showed that most of the genes modulated in LPS-stimulated ARPCs belong to cell activation and defense response pathways. We showed that the ARPC-specific antifibrotic effect is exerted by the secretion of CXCL6, SAA4, and BPIFA2 produced after the anaphylatoxin stimulation. Next, we investigated the molecular signaling that underlies the ARPC protective mechanism and found that renal progenitors diverge from differentiated tubular cells and ECs in myeloid differentiation primary response 88-independent pathway activation. Finally, in a swine model of LPS-induced AKI, we observed that activated ARPCs secreted CXCL6, SAA4, and BPIFA2 as a defense response. These data open new perspectives on the treatment of both sepsis- and endotoxemia-induced AKI, suggesting an underestimated role of ARPCs in preventing endothelial dysfunction and novel strategies to protect the endothelial compartment and promote kidney repair.-Sallustio, F., Stasi, A., Curci, C., Divella, C., Picerno, A., Franzin, R., De Palma, G., Rutigliano, M., Lucarelli, G., Battaglia, M., Staffieri, F., Crovace, A., Pertosa, G. B., Castellano, G., Gallone, A., Gesualdo, L. Renal progenitor cells revert LPS-induced endothelial-to-mesenchymal transition by secreting CXCL6, SAA4, and BPIFA2 antiseptic peptides.


Asunto(s)
Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Células Madre Adultas/patología , Quimiocina CXCL6/metabolismo , Células Endoteliales/patología , Proteínas y Péptidos Salivales/metabolismo , Proteína Amiloide A Sérica/metabolismo , Lesión Renal Aguda/genética , Células Madre Adultas/efectos de los fármacos , Células Madre Adultas/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Lipopolisacáridos/toxicidad , Factor 88 de Diferenciación Mieloide/metabolismo , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patología , Regeneración/fisiología , Transducción de Señal/efectos de los fármacos , Sus scrofa
6.
J Allergy Clin Immunol ; 142(3): 883-891, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29729940

RESUMEN

BACKGROUND: Hereditary angioedema (HAE) caused by C1-inhibitor deficiency is a lifelong illness characterized by recurrent acute attacks of localized skin or mucosal edema. Activation of the kallikrein/bradykinin pathway at the endothelial cell level has a relevant pathogenetic role in acute HAE attacks. Moreover, other pathways are involved given the variable clinical expression of the disease in different patients. OBJECTIVE: We sought to explore the involvement of other putative genes in edema formation. METHODS: We performed a PBMC microarray gene expression analysis on RNA isolated from patients with HAE during an acute attack and compared them with the transcriptomic profile of the same patients in the remission phase. RESULTS: Gene expression analysis identified 23 genes significantly modulated during acute attacks that are involved primarily in the natural killer cell signaling and leukocyte extravasation signaling pathways. Gene set enrichment analysis showed a significant activation of relevant biological processes, such as response to external stimuli and protein processing (q < 0.05), suggesting involvement of PBMCs during acute HAE attacks. Upregulation of 2 genes, those encoding adrenomedullin and cellular receptor for urokinase plasminogen activator (uPAR), which occurs during an acute attack, was confirmed in PBMCs of 20 additional patients with HAE by using real-time PCR. Finally, in vitro studies demonstrated the involvement of uPAR in the generation of bradykinin and endothelial leakage. CONCLUSIONS: Our study demonstrates the increase in levels of adrenomedullin and uPAR in PBMCs during an acute HAE attack. Activation of these genes usually involved in regulation of vascular tone and in inflammatory response might have a pathogenic role by amplifying bradykinin production and edema formation in patients with HAE.


Asunto(s)
Adrenomedulina/genética , Angioedemas Hereditarios/genética , Activador de Plasminógeno de Tipo Uroquinasa/genética , Enfermedad Aguda , Adolescente , Adulto , Anciano , Células Cultivadas , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Jurkat , Leucocitos Mononucleares/inmunología , Masculino , Persona de Mediana Edad , Transcriptoma
7.
Int J Mol Sci ; 20(15)2019 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-31357597

RESUMEN

During sepsis, the increased synthesis of circulating lipopolysaccharide (LPS)-binding protein (LBP) activates LPS/TLR4 signaling in renal resident cells, leading to acute kidney injury (AKI). Pericytes are the major source of myofibroblasts during chronic kidney disease (CKD), but their involvement in AKI is poorly understood. Here, we investigate the occurrence of pericyte-to-myofibroblast trans-differentiation (PMT) in sepsis-induced AKI. In a swine model of sepsis-induced AKI, PMT was detected within 9 h from LPS injection, as evaluated by the reduction of physiologic PDGFRß expression and the dysfunctional α-SMA increase in peritubular pericytes. The therapeutic intervention by citrate-based coupled plasma filtration adsorption (CPFA) significantly reduced LBP, TGF-ß, and endothelin-1 (ET-1) serum levels, and furthermore preserved PDGFRß and decreased α-SMA expression in renal biopsies. In vitro, both LPS and septic sera led to PMT with a significant increase in Collagen I synthesis and α-SMA reorganization in contractile fibers by both SMAD2/3-dependent and -independent TGF-ß signaling. Interestingly, the removal of LBP from septic plasma inhibited PMT. Finally, LPS-stimulated pericytes secreted LBP and TGF-ß and underwent PMT also upon TGF-ß receptor-blocking, indicating the crucial pro-fibrotic role of TLR4 signaling. Our data demonstrate that the selective removal of LBP may represent a therapeutic option to prevent PMT and the development of acute renal fibrosis in sepsis-induced AKI.


Asunto(s)
Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Proteínas de Fase Aguda/metabolismo , Proteínas Portadoras/metabolismo , Transdiferenciación Celular , Glicoproteínas de Membrana/metabolismo , Miofibroblastos/metabolismo , Pericitos/metabolismo , Receptor Toll-Like 4/metabolismo , Lesión Renal Aguda/patología , Animales , Biopsia , Transdiferenciación Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Endotoxinas/efectos adversos , Fibrosis , Inmunohistoquímica , Modelos Biológicos , Miofibroblastos/citología , Porcinos
8.
Nephrol Dial Transplant ; 32(1): 24-31, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27387474

RESUMEN

Sepsis remains a serious cause of morbidity and mortality in critically ill patients, with limited therapeutic options available. Of the several disorders connected with sepsis, acute kidney injury (AKI) is one of the major complications. The pathophysiology of sepsis-induced AKI is characterized by severe inflammation in renal parenchyma with endothelial dysfunction, intra-glomerular thrombosis and tubular injury. Endothelial dysfunction is regulated by several mechanisms implicated in cellular de-differentiation, such as endothelial-to-mesenchymal transition (EndMT). Gram-negative bacteria and their cell wall component lipopolysaccharides (LPSs) are frequently involved in the pathogenesis of AKI. The host recognition of LPS requires a specific receptor, which belongs to the Toll-like receptor (TLR) family of proteins, called TLR4, and two carrier proteins, namely the LPS-binding protein (LBP) and cluster of differentiation 14 (CD14). In particular, LBP is released as a consequence of Gram-negative infection and maximizes the activation of TLR4 signalling. Recent findings regarding the emerging role of LBP in mediating sepsis-induced AKI, and the possible beneficial effects resulting from the removal of this endogenous adaptor protein, will be discussed in this review.


Asunto(s)
Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Proteínas de Fase Aguda/metabolismo , Proteínas Portadoras/metabolismo , Lipopolisacáridos/efectos adversos , Glicoproteínas de Membrana/metabolismo , Sepsis/complicaciones , Lesión Renal Aguda/patología , Animales , Humanos , Transducción de Señal
10.
Nephrol Dial Transplant ; 30(9): 1480-7, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26056176

RESUMEN

BACKGROUND: Coagulation and complement activation represent key events in ischaemia-reperfusion-induced renal injury leading to delayed graft function (DGF). It is still unclear whether the coagulation cascade may also influence the acquired immunity. The aim of the present study was to investigate the expression of protease-activated receptor 1 (PAR-1), the main thrombin receptor, by graft-infiltrating dendritic cells (DCs), and to evaluate whether thrombin may influence DCs complement production and T-cell response. METHODS: PAR-1, BDCA1, CD11c, BDCA4, fibrin, C3c and C3d protein expression were evaluated by confocal microscopy. Cultured DCs were obtained incubating monocytes (Ms) with IL-4 and GM-CSF. DC maturation was obtained with IFN-g+sCD40L or with a cytokine cocktail (IL-1b, TNF-a, PGE2, IL-6). PAR1 protein expression on cultured DC was evaluated by flow-cytometry. Complement receptors, C3, IL12/IL17p40 and IL10 gene expression was evaluated by qPCR. T cell phenotype was evaluated by ELISPOT. IFN-g protein presence was evaluated by ELISA. RESULTS: PAR-1 was expressed by infiltrating myeloid DCs in pre-transplant and in DGF biopsies. In DGF grafts, myeloid DCs localized within fibrin and C3d deposits and expressed C3c. In vitro, PAR-1 protein expression was increased in monocyte-derived immature DCs and in cytokine-induced mature DCs compared to monocytes. PAR-1 activation caused a time-dependent increase in C3 and complement receptors expression. Moreover, thrombin stimulation, while reducing interleukin-10 mRNA abundance, induced interleukin-12/IL-17 p40 gene expression, and promoted C3a ability to increase interleukin-12/IL17 mRNA abundance. These changes in the DCs' cytokine pattern influenced their ability to induce interferon-g production by T cells, suggesting the activation of a T helper-1 bias. CONCLUSION: Our data suggest that PAR-1 is expressed by DCs in DGF grafts and its activation may induce complement production and a Th1 bias. This observation suggests a potential pathogenic link between DGF and acquired allo-response leading to graft damage.


Asunto(s)
Citocinas/metabolismo , Funcionamiento Retardado del Injerto/inmunología , Células Dendríticas/inmunología , Trasplante de Riñón/efectos adversos , Túbulos Renales Proximales/inmunología , Linfocitos T/inmunología , Trombina/farmacología , Células Cultivadas , Citocinas/genética , Funcionamiento Retardado del Injerto/tratamiento farmacológico , Funcionamiento Retardado del Injerto/patología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/patología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Hemostáticos/farmacología , Humanos , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/patología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/efectos de los fármacos , Linfocitos T/patología
11.
Ann Hum Genet ; 78(2): 73-82, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24456027

RESUMEN

Hereditary angioedema (HAE) is an autosomal dominant disease due to mutations in the C1 inhibitor gene (C1NH) that affects protein synthesis (HAE type I) or function (HAE type II). In 45 subjects affected by HAE diagnosed through clinical features and C1 inhibitor deficiency from the south of Italy (38 with type I and 7 with type II HAE), the whole C1NH coding region was screened for mutations by direct DNA sequencing. A severity score based on clinical manifestation, age at disease onset, and need for long-term prophylaxis was used to investigate possible genotype-phenotype correlations. A series of 22 different mutations was identified: nine missense (40.9%), five nonsense (22.7%), six frameshift (27.3), one small deletion (4.5%), and one splicing defect (4.5%). Nine C1NH mutations have not been previously described. No correlation was found between C1 inhibitor function level and severity score or age at first attack. Moreover, there was no correlation between different types of mutations and clinical phenotype. The number of different mutations identified highlights the heterogeneity of C1 inhibitor deficiency and supports the hypothesis that HAE clinical phenotype is not strictly related to the type of mutation but rather depends on unknown factors.


Asunto(s)
Angioedemas Hereditarios/genética , Proteínas Inactivadoras del Complemento 1/genética , Mutación , Adolescente , Adulto , Anciano , Angioedemas Hereditarios/metabolismo , Niño , Estudios de Cohortes , Proteína Inhibidora del Complemento C1 , Femenino , Estudios de Asociación Genética , Humanos , Italia , Masculino , Persona de Mediana Edad , Eliminación de Secuencia , Adulto Joven
12.
Nephrol Dial Transplant ; 29(4): 799-808, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24463188

RESUMEN

BACKGROUND: Increasing evidence demonstrates a phenotypic plasticity of endothelial cells (ECs). Endothelial-to-mesenchymal transition (EndMT) contributes to the development of tissue fibrosis. However, the pathogenic factors and signalling pathways regulating this process in ischaemia/reperfusion (I/R) injury are still poorly understood. METHODS: We investigated the possible role of complement in the induction of this endothelial dysfunction in a swine model of renal I/R injury by using recombinant C1 inhibitor in vivo. RESULTS: Here, we showed that I/R injury reduced the density of renal peritubular capillaries and induced tissue fibrosis with generation of CD31(+)/α-SMA(+) and CD31(+)/FPS-1(+) cells indicating EndMT. When we inhibited complement, the process of EndMT became rare, with preserved density of peritubular capillaries and significant reduction in renal fibrosis. When we activated ECs by anaphylatoxins in vitro, C3a and C5a led to altered endothelial phenotype with increased expression of fibroblast markers and decrease expression of specific endothelial markers. The activation of Akt pathway was pivotal for the C3a and C5a-induced EndMT in vitro. In accordance, inhibition of complement in vivo led to the abrogation of Akt signalling, with hampered EndMT and tissue fibrosis. CONCLUSIONS: Our data demonstrate a critical role for complement in the acute induction of EndMT via the Akt pathway. Therapeutic inhibition of these systems may be essential to prevent vascular damage and tissue fibrosis in transplanted kidney.


Asunto(s)
Anafilatoxinas/metabolismo , Células Endoteliales/metabolismo , Enfermedades Renales/patología , Riñón/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Daño por Reperfusión/complicaciones , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis/complicaciones , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Riñón/metabolismo , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Transducción de Señal , Porcinos
13.
Crit Care ; 18(5): 520, 2014 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-25261195

RESUMEN

INTRODUCTION: The pathophysiology of endotoxemia-induced acute kidney injury (AKI) is characterized by an intense activation of the host immune system and renal resident cells by lipopolysaccharide (LPS) and derived proinflammatory products. However, the occurrence of renal fibrosis in this setting has been poorly investigated. The aim of the present study was to investigate the possible association between endothelial dysfunction and acute development of tissue fibrosis in a swine model of LPS-induced AKI. Moreover, we studied the possible effects of coupled plasma filtration adsorption (CPFA) in this setting. METHODS: After 9 hours from LPS infusion and 6 hours of CPFA treatment, histologic and biochemical changes were analyzed in pigs. Apoptosis and endothelial dysfunction were assessed on renal biopsies. The levels of LPS-binding protein (LBP) were quantified with enzyme-linked immunosorbent assay (ELISA). Endothelial cells (ECs) were stimulated in vitro with LPS and cultured in the presence of swine sera and were analyzed with FACS and real-time RT-PCR. RESULTS: In a swine model of LPS-induced AKI, we observed that acute tubulointerstitial fibrosis occurred within 9 hours from LPS injection. Acute fibrosis was associated with dysfunctional alpha-smooth muscle actin (α-SMA)+ ECs characterized by active proliferation (Ki-67+) without apoptosis (caspase-3-). LPS led to EC dysfunction in vitro with significant vimentin and N-cadherin expression and increased collagen I mRNA synthesis. Therapeutic intervention by citrate-based CPFA significantly prevented acute fibrosis in endotoxemic animals, by preserving the EC phenotype in both peritubular capillaries and renal arteries. We found that the removal of LBP from plasma was crucial to eliminate the effects of LPS on EC dysfunction, by blocking LPS-induced collagen I production. CONCLUSIONS: Our data indicate that EC dysfunction might be pivotal in the acute development of tubulointerstitial fibrosis in LPS-induced AKI. Selective removal of the LPS adaptor protein LBP might represent a future therapeutic option to prevent EC dysfunction and tissue fibrosis in endotoxemia-induced AKI.


Asunto(s)
Lesión Renal Aguda/patología , Células Endoteliales/fisiología , Riñón/patología , Lesión Renal Aguda/inducido químicamente , Proteínas de Fase Aguda , Animales , Proteínas Portadoras , Caspasa 3/metabolismo , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Fibrosis , Riñón/irrigación sanguínea , Riñón/fisiopatología , Glicoproteínas de Membrana , Porcinos
14.
Kidney Int ; 83(3): 392-403, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23325086

RESUMEN

Acute kidney injury (AKI) is emerging as a worldwide public health problem. Recent studies have focused on the possibility of using human adult renal stem/progenitor cells (ARPCs) to improve the repair of AKI. Here we studied the influence of ARPCs on the healing of cisplatin-injured renal proximal tubular epithelial cells. Tubular, but not glomerular, ARPCs provided a protective effect promoting proliferation of surviving tubular cells and inhibiting cisplatin-induced apoptosis. The recovery effect was specific to tubular ARPCs, occurred only after damage sensing, and was completely cancelled by TLR2 blockade on tubular ARPCs. Moreover, tubular, but not glomerular, ARPCs were resistant to the apoptotic effect of cisplatin. Tubular ARPCs operate mainly through the engagement of TLR2, the secretion of inhibin-A protein, and microvesicle-shuttled decorin, inhibin-A, and cyclin D1 mRNAs. These factors worked synergistically and were essential to the repair process. The involvement of tubular ARPC-secreted inhibin-A and decorin mRNA in the pathophysiology of AKI was also confirmed in transplant patients affected by delayed graft function. Hence, identification of this TLR2-driven recovery mechanism may shed light on new therapeutic strategies to promote the recovery capacity of the kidney in acute tubular damage. Use of these components, derived from ARPCs, avoids injecting stem cells.


Asunto(s)
Lesión Renal Aguda/terapia , Decorina/fisiología , Inhibinas/fisiología , Túbulos Renales Proximales/efectos de los fármacos , Riñón/citología , Trasplante de Células Madre , Receptor Toll-Like 2/fisiología , Adulto , Apoptosis , Proliferación Celular , Separación Celular , Cisplatino/toxicidad , Ciclina D1/fisiología , Decorina/genética , Humanos , Inhibinas/análisis , Túbulos Renales Proximales/patología , Regeneración , Receptor Toll-Like 2/antagonistas & inhibidores
15.
Am J Pathol ; 176(4): 1648-59, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20150432

RESUMEN

Ischemia-reperfusion injury is the major cause of delayed graft function in transplanted kidneys, an early event significantly affecting long-term graft function and survival. Several studies in rodents suggest that the alternative pathway of the complement system plays a pivotal role in renal ischemia-reperfusion injury. However, limited information is currently available from humans and larger animals. Here we demonstrated that 30 minutes of ischemia resulted in the induction of C4d/C1q, C4d/MLB, and MBL/MASP-2 deposits in a swine model of ischemia-reperfusion injury. The infusion of C1-inhibitor led to a significant reduction in peritubular capillary and glomerular C4d and C5b-9 deposition. Moreover, complement-inhibiting treatment significantly reduced the numbers of infiltrating CD163(+), SWC3a(+), CD4a(+), and CD8a(+) cells. C1-inhibitor administration led to significant inhibition of tubular damage and tubular epithelial cells apoptosis. Interestingly, we report that focal C4d-deposition colocalizes with C1q and MBL at the peritubular and glomerular capillary levels also in patients with delayed graft function. In conclusion, we demonstrated the activation and a pathogenic role of classical and lectin pathways of complement in a swine model of ischemia-reperfusion-induced renal damage. Therefore, inhibition of these two pathways might represent a novel therapeutic approach in the prevention of delayed graft function in kidney transplant recipients.


Asunto(s)
Proteínas del Sistema Complemento/metabolismo , Enfermedades Renales/patología , Lectinas/química , Daño por Reperfusión/metabolismo , Animales , Proteína Inhibidora del Complemento C1/biosíntesis , Complemento C1q/metabolismo , Complemento C4b/metabolismo , Modelos Animales de Enfermedad , Femenino , Supervivencia de Injerto , Humanos , Inmunohistoquímica/métodos , Isquemia/patología , Enfermedades Renales/metabolismo , Fragmentos de Péptidos/metabolismo , Porcinos
16.
Transpl Int ; 24(3): 233-42, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21281362

RESUMEN

Ischemia-reperfusion injury (IRI) in kidney transplantation is the major cause of delayed graft function (DGF), an event associated with an increased risk of acute rejection. The aim of this study was to evaluate T helper (Th) cell phenotype in renal transplants with DGF. T-bet (Th1), GATA-3 (Th2) and IL-17 (Th17) protein expression was investigated in pretransplant biopsies, DGF and acute tubular damage (ATD) caused by calcineurin-inhibitor toxicity. Intracytofluorimetric analysis of IFN-γ, IL-4 and IL-17 was performed to analyze Th1, Th2 and Th17 responses in peripheral blood mononuclear cells of recipients with early graft function (EGF) and DGF, before (T0) and 24 h after transplantation (T24). In pretransplant biopsies, T-bet(+) , GATA-3(+) and IL-17(+) cells were barely detectable. In DGF, T-bet(+) and IL-17(+) cells were significantly increased compared with pretransplant and ATD. More than 90% of T-bet(+) and less then 5% of IL-17(+) cells were CD4(+) . GATA-3(+) cells were increased to a lower extent. T-bet(+) /GATA-3(+) cell ratio was significantly higher in DGF. Peripheral CD4(+) IFN-γ/IL-4 ratio was significantly decreased in DGF, while CD4(+) /IL-17(+) cells did not differ between T0 and T24 in DGF. Our data suggest that DGF is characterized by a prevalent Th1 phenotype within the graft. This event might represent a link between DGF and acute rejection.


Asunto(s)
Funcionamiento Retardado del Injerto/patología , Trasplante de Riñón/inmunología , Linfocitos T Colaboradores-Inductores/patología , Células TH1/patología , Células Th2/patología , Adulto , Animales , Isquemia Fría/efectos adversos , Funcionamiento Retardado del Injerto/inmunología , Rechazo de Injerto/fisiopatología , Humanos , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Interleucina-4/metabolismo , Persona de Mediana Edad , Daño por Reperfusión/patología
17.
J Am Soc Nephrol ; 21(12): 2157-68, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20864690

RESUMEN

Mycophenolic acid (MPA) appears to have anti-fibrotic effects, but the molecular mechanisms underlying this are unknown. We prospectively studied 35 stable kidney transplant recipients maintained on cyclosporine and azathioprine. We converted 20 patients from azathioprine to enteric-coated mycophenolate sodium (EC-MPS) and continued the remaining 15 patients on azathioprine. Exploratory mRNA expression profiling, performed on five randomly selected EC-MPS patients, revealed significant upregulation of neutral endopeptidase (NEP), which is an enzyme that degrades angiotensin II. We confirmed these microarray data by measuring levels of NEP expression in all subjects; in addition, we found that NEP gene expression correlated inversely with proteinuria. In an additional 33 patients, glomerular and tubular NEP protein levels from renal graft biopsies were significantly higher among the 13 patients receiving cyclosporine + EC-MPS than among the 12 patients receiving cyclosporine + azathioprine or 8 patients receiving cyclosporine alone. Glomerular NEP expression inversely correlated with glomerulosclerosis and proteinuria, and tubular NEP expression inversely correlated with interstitial fibrosis. Incubation of human proximal tubular cells with MPA increased NEP gene expression in a dose- and time-dependent manner. Moreover, MPA reduced angiotensin II-induced expression of the profibrotic factor plasminogen activator inhibitor-1, and a specific NEP inhibitor completely reversed this effect. Taken together, our data suggest that MPA directly induces expression of neutral endopeptidase, which may reduce proteinuria and slow the progression of renal damage in kidney transplant recipients.


Asunto(s)
Inmunosupresores/administración & dosificación , Trasplante de Riñón/inmunología , Trasplante de Riñón/patología , Ácido Micofenólico/administración & dosificación , Neprilisina/efectos de los fármacos , Administración Oral , Adulto , Anciano , Azatioprina/administración & dosificación , Ciclosporina/administración & dosificación , Relación Dosis-Respuesta a Droga , Quimioterapia Combinada , Femenino , Fibrosis/prevención & control , Estudios de Seguimiento , Regulación de la Expresión Génica , Rechazo de Injerto/prevención & control , Supervivencia de Injerto , Humanos , Masculino , Persona de Mediana Edad , Neprilisina/genética , Neprilisina/metabolismo , Estudios Prospectivos , Medición de Riesgo , Comprimidos Recubiertos , Inmunología del Trasplante , Resultado del Tratamiento
18.
Methods Mol Biol ; 2325: 107-124, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34053054

RESUMEN

Tissue microarray (TMA) is a smart technical innovation recently imposed in pathology research. This technology provides a high-throughput analysis of multiple tissues at the same time. The technique allows faster analysis and considerably reducing costs for the staining because many small representative tissue samples from hundreds of different cases are assembled on a single histologic slide. This versatile technique may improve conventional microscopic techniques to detect and characterize cytotoxic T lymphocytes (CTL). Immunohistochemistry (IHC) may be effectively employed in CTL characterization to identify the location and distribution of target antigens in tissues by staining with a specific antibody. The antibody may be conjugated to either a fluorescent or enzymatic label, and the location of the label seen through a microscope approximates the position of the target antigen.This article summarizes the technical aspects of tissue microarray construction and sectioning, advantages, application, and limitations associated with immunohistochemistry and immunofluorescence.


Asunto(s)
Técnica del Anticuerpo Fluorescente/métodos , Inmunohistoquímica/métodos , Linfocitos T Citotóxicos/metabolismo , Análisis de Matrices Tisulares/métodos , Anticuerpos , Antígenos , Colorantes Fluorescentes , Humanos , Adhesión en Parafina/métodos , Coloración y Etiquetado/métodos
19.
Cancers (Basel) ; 13(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34439397

RESUMEN

Platelets represent the linkage between tissue damage and inflammatory response with a putative role in tumorigenesis. Given the importance of the microenvironment in colon cancer development, we elucidated the eventual role of platelets-cancer cells crosstalk in in vivo colon cancermodels. To evaluate the involvement of platelets in intestinal tumorigenesis, we first analyzed if the ablation of ß-integrin P-selectin that drives platelets-cell adhesion, would contribute to platelets-colon cancer cell interaction and drive cancer progression. In a xenograft tumor model, we observed that when tumors are inoculated with platelets, the ablation of P-selectin significantly reduced tumor growth compared to control platelets. Furthermore, in genetic models, as well as in chronic colitis-associated colorectal carcinogenesis, P-selectin ablated mice displayed a significant reduction in tumor number and size compared to control mice. Taken together, our data highlights the importance of platelets in the tumor microenvironment for intestinal tumorigenesis. These results support the hypothesis that a strategy aimed to inhibit platelets adhesion to tumor cells are able to block tumor growth and could represent a novel therapeutic approach to colon cancer treatment.

20.
Front Immunol ; 12: 605212, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868226

RESUMEN

Sepsis-induced acute kidney injury (AKI) is a frequent complication in critically ill patients, refractory to conventional treatments. Aberrant activation of innate immune system may affect organ damage with poor prognosis for septic patients. Here, we investigated the efficacy of polymethyl methacrylate membrane (PMMA)-based continuous hemofiltration (CVVH) in modulating systemic and tissue immune activation in a swine model of LPS-induced AKI. After 3 h from LPS infusion, animals underwent to PMMA-CVVH or polysulfone (PS)-CVVH. Renal deposition of terminal complement mediator C5b-9 and of Pentraxin-3 (PTX3) deposits were evaluated on biopsies whereas systemic Complement activation was assessed by ELISA assay. Gene expression profile was performed from isolated peripheral blood mononuclear cells (PBMC) by microarrays and the results validated by Real-time PCR. Endotoxemic pigs presented oliguric AKI with increased tubulo-interstitial infiltrate, extensive collagen deposition, and glomerular thrombi; local PTX-3 and C5b-9 renal deposits and increased serum activation of classical and alternative Complement pathways were found in endotoxemic animals. PMMA-CVVH treatment significantly reduced tissue and systemic Complement activation limiting renal damage and fibrosis. By microarray analysis, we identified 711 and 913 differentially expressed genes with a fold change >2 and a false discovery rate <0.05 in endotoxemic pigs and PMMA-CVVH treated-animals, respectively. The most modulated genes were Granzyme B, Complement Factor B, Complement Component 4 Binding Protein Alpha, IL-12, and SERPINB-1 that were closely related to sepsis-induced immunological process. Our data suggest that PMMA-based CVVH can efficiently modulate immunological dysfunction in LPS-induced AKI.


Asunto(s)
Lesión Renal Aguda/etiología , Lesión Renal Aguda/terapia , Activación de Complemento/efectos de los fármacos , Hemofiltración , Lipopolisacáridos/efectos adversos , Polimetil Metacrilato/administración & dosificación , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/mortalidad , Animales , Biomarcadores , Proteína C-Reactiva/genética , Proteína C-Reactiva/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Expresión Génica , Hemofiltración/efectos adversos , Hemofiltración/métodos , Humanos , Inmunohistoquímica , Mediadores de Inflamación , Pruebas de Función Renal , Diálisis Renal , Sepsis/complicaciones , Componente Amiloide P Sérico/genética , Componente Amiloide P Sérico/metabolismo , Porcinos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA