Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 153(3): 707-20, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23622250

RESUMEN

The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimer's disease (LOAD), we constructed gene-regulatory networks in 1,647 postmortem brain tissues from LOAD patients and nondemented subjects, and we demonstrate that LOAD reconfigures specific portions of the molecular interaction structure. Through an integrative network-based approach, we rank-ordered these network structures for relevance to LOAD pathology, highlighting an immune- and microglia-specific module that is dominated by genes involved in pathogen phagocytosis, contains TYROBP as a key regulator, and is upregulated in LOAD. Mouse microglia cells overexpressing intact or truncated TYROBP revealed expression changes that significantly overlapped the human brain TYROBP network. Thus the causal network structure is a useful predictor of response to gene perturbations and presents a framework to test models of disease mechanisms underlying LOAD.


Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Redes Reguladoras de Genes , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Teorema de Bayes , Encéfalo/patología , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Microglía/metabolismo
2.
Future Oncol ; 17(3): 333-347, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33074018

RESUMEN

In recent years, regulatory bodies have increasingly recognized the utility of real-world evidence (RWE) for supplementing and supporting clinical trial data in new drug applications. Nevertheless, the integration of RWE into established regulatory processes is complex and the generation of 'regulatory-grade' real-world data faces operational, methodological, data-related and policy-related challenges. In parallel with this evolving role for RWE, immuno-oncology therapies have emerged as leading cancer treatments and are expected to continue to play a central role in the future. In this article, we review the current literature on the use of RWE for regulatory submissions, with a focus on novel anticancer immunotherapies, and discuss the utility and current limitations of RWE in the context of drug development and regulatory approvals.


Asunto(s)
Medicina Basada en la Evidencia , Inmunoterapia/legislación & jurisprudencia , Neoplasias/tratamiento farmacológico , Ensayos Clínicos como Asunto/legislación & jurisprudencia , Desarrollo de Medicamentos/legislación & jurisprudencia , Humanos , Neoplasias/inmunología , Vigilancia de Productos Comercializados , Resultado del Tratamiento
3.
PLoS Genet ; 13(1): e1006565, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28129359

RESUMEN

To date, no large scale, systematic description of the blood serum proteome has been performed in inflammatory bowel disease (IBD) patients. By using microarray technology, a more complete description of the blood proteome of IBD patients is feasible. It may help to achieve a better understanding of the disease. We analyzed blood serum profiles of 1128 proteins in IBD patients of European descent (84 Crohn's Disease (CD) subjects and 88 Ulcerative Colitis (UC) subjects) as well as 15 healthy control subjects, and linked protein variability to patient age (all cohorts) and genetic components (genotype data generated from CD patients). We discovered new, previously unreported aging-associated proteomic traits (such as serum Albumin level), confirmed previously reported results from different tissues (i.e., upregulation of APOE with aging), and found loss of regulation of MMP7 in CD patients. In carrying out a genome wide genotype-protein association study (proteomic Quantitative Trait Loci, pQTL) within the CD patients, we identified 41 distinct proteomic traits influenced by cis pQTLs (underlying SNPs are referred to as pSNPs). Significant overlaps between pQTLs and cis eQTLs corresponding to the same gene were observed and in some cases the QTL were related to inflammatory disease susceptibility. Importantly, we discovered that serum protein levels of MST1 (Macrophage Stimulating 1) were regulated by SNP rs3197999 (p = 5.96E-10, FDR<5%), an accepted GWAS locus for IBD. Filling the knowledge gap of molecular mechanisms between GWAS hits and disease susceptibility requires systematically dissecting the impact of the locus at the cell, mRNA expression, and protein levels. The technology and analysis tools that are now available for large-scale molecular studies can elucidate how alterations in the proteome driven by genetic polymorphisms cause or provide protection against disease. Herein, we demonstrated this directly by integrating proteomic and pQTLs with existing GWAS, mRNA expression, and eQTL datasets to provide insights into the biological processes underlying IBD and pinpoint causal genetic variants along with their downstream molecular consequences.


Asunto(s)
Envejecimiento/sangre , Predisposición Genética a la Enfermedad , Enfermedades Inflamatorias del Intestino/sangre , Proteoma/metabolismo , Adulto , Biomarcadores/sangre , Estudios de Casos y Controles , Femenino , Factor de Crecimiento de Hepatocito/sangre , Ensayos Analíticos de Alto Rendimiento , Humanos , Enfermedades Inflamatorias del Intestino/epidemiología , Enfermedades Inflamatorias del Intestino/genética , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Proteoma/genética , Proteínas Proto-Oncogénicas/sangre , Sitios de Carácter Cuantitativo
4.
Hum Mol Genet ; 24(11): 3005-20, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25586491

RESUMEN

Recent advances in genetics have spurred rapid progress towards the systematic identification of genes involved in complex diseases. Still, the detailed understanding of the molecular and physiological mechanisms through which these genes affect disease phenotypes remains a major challenge. Here, we identify the asthma disease module, i.e. the local neighborhood of the interactome whose perturbation is associated with asthma, and validate it for functional and pathophysiological relevance, using both computational and experimental approaches. We find that the asthma disease module is enriched with modest GWAS P-values against the background of random variation, and with differentially expressed genes from normal and asthmatic fibroblast cells treated with an asthma-specific drug. The asthma module also contains immune response mechanisms that are shared with other immune-related disease modules. Further, using diverse omics (genomics, gene-expression, drug response) data, we identify the GAB1 signaling pathway as an important novel modulator in asthma. The wiring diagram of the uncovered asthma module suggests a relatively close link between GAB1 and glucocorticoids (GCs), which we experimentally validate, observing an increase in the level of GAB1 after GC treatment in BEAS-2B bronchial epithelial cells. The siRNA knockdown of GAB1 in the BEAS-2B cell line resulted in a decrease in the NFkB level, suggesting a novel regulatory path of the pro-inflammatory factor NFkB by GAB1 in asthma.


Asunto(s)
Antiasmáticos/farmacología , Asma/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antiasmáticos/uso terapéutico , Asma/tratamiento farmacológico , Asma/metabolismo , Secuencia de Bases , Relación Dosis-Respuesta a Droga , Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Inflamación/genética , Inflamación/metabolismo , Modelos Genéticos , FN-kappa B/genética , FN-kappa B/metabolismo , Mapeo de Interacción de Proteínas , Transducción de Señal
5.
Gastroenterology ; 150(5): 1196-1207, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26836588

RESUMEN

BACKGROUND & AIMS: Severe forms of inflammatory bowel disease (IBD) that develop in very young children can be caused by variants in a single gene. We performed whole-exome sequence (WES) analysis to identify genetic factors that might cause granulomatous colitis and severe perianal disease, with recurrent bacterial and viral infections, in an infant of consanguineous parents. METHODS: We performed targeted WES analysis of DNA collected from the patient and her parents. We validated our findings by a similar analysis of DNA from 150 patients with very-early-onset IBD not associated with known genetic factors analyzed in Toronto, Oxford, and Munich. We compared gene expression signatures in inflamed vs noninflamed intestinal and rectal tissues collected from patients with treatment-resistant Crohn's disease who participated in a trial of ustekinumab. We performed functional studies of identified variants in primary cells from patients and cell culture. RESULTS: We identified a homozygous variant in the tripartite motif containing 22 gene (TRIM22) of the patient, as well as in 2 patients with a disease similar phenotype. Functional studies showed that the variant disrupted the ability of TRIM22 to regulate nucleotide binding oligomerization domain containing 2 (NOD2)-dependent activation of interferon-beta signaling and nuclear factor-κB. Computational studies demonstrated a correlation between the TRIM22-NOD2 network and signaling pathways and genetic factors associated very early onset and adult-onset IBD. TRIM22 is also associated with antiviral and mycobacterial effectors and markers of inflammation, such as fecal calprotectin, C-reactive protein, and Crohn's disease activity index scores. CONCLUSIONS: In WES and targeted exome sequence analyses of an infant with severe IBD characterized by granulomatous colitis and severe perianal disease, we identified a homozygous variant of TRIM22 that affects the ability of its product to regulate NOD2. Combined computational and functional studies showed that the TRIM22-NOD2 network regulates antiviral and antibacterial signaling pathways that contribute to inflammation. Further study of this network could lead to new disease markers and therapeutic targets for patients with very early and adult-onset IBD.


Asunto(s)
Enfermedad de Crohn/genética , Variación Genética , Antígenos de Histocompatibilidad Menor/genética , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Proteínas de Motivos Tripartitos/genética , Edad de Inicio , Australia , Células Cultivadas , Biología Computacional , Consanguinidad , Enfermedad de Crohn/diagnóstico , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/terapia , Bases de Datos Genéticas , Inglaterra , Exoma , Femenino , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Alemania , Homocigoto , Humanos , Recién Nacido , Antígenos de Histocompatibilidad Menor/metabolismo , Ontario , Linaje , Fenotipo , Mapas de Interacción de Proteínas , Proteínas Represoras/metabolismo , Índice de Severidad de la Enfermedad , Transfección , Proteínas de Motivos Tripartitos/metabolismo
6.
BMC Genomics ; 15: 532, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24973796

RESUMEN

BACKGROUND: Gene expression genetic studies in human tissues and cells identify cis- and trans-acting expression quantitative trait loci (eQTLs). These eQTLs provide insights into regulatory mechanisms underlying disease risk. However, few studies systematically characterized eQTL results across cell and tissues types. We synthesized eQTL results from >50 datasets, including new primary data from human brain, peripheral plaque and kidney samples, in order to discover features of human eQTLs. RESULTS: We find a substantial number of robust cis-eQTLs and far fewer trans-eQTLs consistent across tissues. Analysis of 45 full human GWAS scans indicates eQTLs are enriched overall, and above nSNPs, among positive statistical signals in genetic mapping studies, and account for a significant fraction of the strongest human trait effects. Expression QTLs are enriched for gene centricity, higher population allele frequencies, in housekeeping genes, and for coincidence with regulatory features, though there is little evidence of 5' or 3' positional bias. Several regulatory categories are not enriched including microRNAs and their predicted binding sites and long, intergenic non-coding RNAs. Among the most tissue-ubiquitous cis-eQTLs, there is enrichment for genes involved in xenobiotic metabolism and mitochondrial function, suggesting these eQTLs may have adaptive origins. Several strong eQTLs (CDK5RAP2, NBPFs) coincide with regions of reported human lineage selection. The intersection of new kidney and plaque eQTLs with related GWAS suggest possible gene prioritization. For example, butyrophilins are now linked to arterial pathogenesis via multiple genetic and expression studies. Expression QTL and GWAS results are made available as a community resource through the NHLBI GRASP database [http://apps.nhlbi.nih.gov/grasp/]. CONCLUSIONS: Expression QTLs inform the interpretation of human trait variability, and may account for a greater fraction of phenotypic variability than protein-coding variants. The synthesis of available tissue eQTL data highlights many strong cis-eQTLs that may have important biologic roles and could serve as positive controls in future studies. Our results indicate some strong tissue-ubiquitous eQTLs may have adaptive origins in humans. Efforts to expand the genetic, splicing and tissue coverage of known eQTLs will provide further insights into human gene regulation.


Asunto(s)
Sitios de Carácter Cuantitativo , Línea Celular , Análisis por Conglomerados , Perfilación de la Expresión Génica , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Humanos , Especificidad de Órganos , Polimorfismo de Nucleótido Simple , Transcriptoma
7.
Genome Res ; 21(7): 1008-16, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21602305

RESUMEN

To map the genetics of gene expression in metabolically relevant tissues and investigate the diversity of expression SNPs (eSNPs) in multiple tissues from the same individual, we collected four tissues from approximately 1000 patients undergoing Roux-en-Y gastric bypass (RYGB) and clinical traits associated with their weight loss and co-morbidities. We then performed high-throughput genotyping and gene expression profiling and carried out a genome-wide association analyses for more than 100,000 gene expression traits representing four metabolically relevant tissues: liver, omental adipose, subcutaneous adipose, and stomach. We successfully identified 24,531 eSNPs corresponding to about 10,000 distinct genes. This represents the greatest number of eSNPs identified to our knowledge by any study to date and the first study to identify eSNPs from stomach tissue. We then demonstrate how these eSNPs provide a high-quality disease map for each tissue in morbidly obese patients to not only inform genetic associations identified in this cohort, but in previously published genome-wide association studies as well. These data can aid in elucidating the key networks associated with morbid obesity, response to RYGB, and disease as a whole.


Asunto(s)
Mucosa Gástrica/metabolismo , Hígado/metabolismo , Obesidad Mórbida/epidemiología , Obesidad Mórbida/genética , Adiposidad/genética , Adulto , Estudios de Cohortes , Comorbilidad , Bases de Datos Genéticas , Femenino , Derivación Gástrica , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Obesidad Mórbida/cirugía , Polimorfismo de Nucleótido Simple , Pérdida de Peso
8.
PLoS Genet ; 6(5): e1000932, 2010 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-20463879

RESUMEN

Genome-wide association studies (GWAS) have demonstrated the ability to identify the strongest causal common variants in complex human diseases. However, to date, the massive data generated from GWAS have not been maximally explored to identify true associations that fail to meet the stringent level of association required to achieve genome-wide significance. Genetics of gene expression (GGE) studies have shown promise towards identifying DNA variations associated with disease and providing a path to functionally characterize findings from GWAS. Here, we present the first empiric study to systematically characterize the set of single nucleotide polymorphisms associated with expression (eSNPs) in liver, subcutaneous fat, and omental fat tissues, demonstrating these eSNPs are significantly more enriched for SNPs that associate with type 2 diabetes (T2D) in three large-scale GWAS than a matched set of randomly selected SNPs. This enrichment for T2D association increases as we restrict to eSNPs that correspond to genes comprising gene networks constructed from adipose gene expression data isolated from a mouse population segregating a T2D phenotype. Finally, by restricting to eSNPs corresponding to genes comprising an adipose subnetwork strongly predicted as causal for T2D, we dramatically increased the enrichment for SNPs associated with T2D and were able to identify a functionally related set of diabetes susceptibility genes. We identified and validated malic enzyme 1 (Me1) as a key regulator of this T2D subnetwork in mouse and provided support for the association of this gene to T2D in humans. This integration of eSNPs and networks provides a novel approach to identify disease susceptibility networks rather than the single SNPs or genes traditionally identified through GWAS, thereby extracting additional value from the wealth of data currently being generated by GWAS.


Asunto(s)
Tejido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/genética , Expresión Génica , Estudio de Asociación del Genoma Completo , Hígado/metabolismo , Polimorfismo de Nucleótido Simple , Animales , Estudios de Cohortes , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Commun Biol ; 6(1): 95, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36694043

RESUMEN

Previous studies have conducted time course characterization of murine colitis models through transcriptional profiling of differential expression. We characterize the transcriptional landscape of acute and chronic models of dextran sodium sulfate (DSS) and adoptive transfer (AT) colitis to derive temporal gene expression and splicing signatures in blood and colonic tissue in order to capture dynamics of colitis remission and relapse. We identify sub networks of patient-derived causal networks that are enriched in these temporal signatures to distinguish acute and chronic disease components within the broader molecular landscape of IBD. The interaction between the DSS phenotype and chronological time-point naturally defines parsimonious temporal gene expression and splicing signatures associated with acute and chronic phases disease (as opposed to ordinary time-specific differential expression/splicing). We show these expression and splicing signatures are largely orthogonal, i.e. affect different genetic bodies, and that using machine learning, signatures are predictive of histopathological measures from both blood and intestinal data in murine colitis models as well as an independent cohort of IBD patients. Through access to longitudinal multi-scale profiling from disease tissue in IBD patient cohorts, we can apply this machine learning pipeline to generation of direct patient temporal multimodal regulatory signatures for prediction of histopathological outcomes.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Enfermedades Inflamatorias del Intestino/genética , Colitis/inducido químicamente , Colitis/genética , Fenotipo , Sulfato de Dextran/toxicidad
10.
Nature ; 442(7102): 533-8, 2006 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-16767105

RESUMEN

We present an integrated approach to identify genetic mechanisms that control self-renewal in mouse embryonic stem cells. We use short hairpin RNA (shRNA) loss-of-function techniques to downregulate a set of gene products whose expression patterns suggest self-renewal regulatory functions. We focus on transcriptional regulators and identify seven genes for which shRNA-mediated depletion negatively affects self-renewal, including four genes with previously unrecognized roles in self-renewal. Perturbations of these gene products are combined with dynamic, global analyses of gene expression. Our studies suggest specific biological roles for these molecules and reveal the complexity of cell fate regulation in embryonic stem cells.


Asunto(s)
Interferencia de ARN , Regeneración/genética , Regeneración/fisiología , Células Madre/citología , Células Madre/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/citología , Expresión Génica , Prueba de Complementación Genética , Proteínas de Homeodominio/metabolismo , Ratones , Proteína Homeótica Nanog
11.
PLoS Genet ; 5(12): e1000752, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19997628

RESUMEN

Aging involves a progressive physiological remodeling that is controlled by both genetic and environmental factors. Many of these factors impact also on white adipose tissue (WAT), which has been shown to be a determinant of lifespan. Interrogating a transcriptional network for predicted causal regulatory interactions in a collection of mouse WAT from F2 crosses with a seed set of 60 known longevity genes, we identified a novel transcriptional subnetwork of 742 genes which represent thus-far-unknown longevity genes. Within this subnetwork, one gene was Pparg (Nr1c3), an adipose-enriched nuclear receptor previously not associated with longevity. In silico, both the PPAR signaling pathway and the transcriptional signature of Ppargamma agonist rosiglitazone overlapped with the longevity subnetwork, while in vivo, lowered expression of Pparg reduced lifespan in both the lipodystrophic Pparg1/2-hypomorphic and the Pparg2-deficient mice. These results establish Ppargamma2 as one of the determinants of longevity and suggest that lifespan may be rather determined by a purposeful genetic program than a random process.


Asunto(s)
Longevidad/genética , PPAR gamma/genética , PPAR gamma/metabolismo , Tejido Adiposo/metabolismo , Animales , Regulación de la Expresión Génica , Masculino , Ratones , Transducción de Señal
12.
Hum Mol Genet ; 18(18): 3502-7, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19553259

RESUMEN

To investigate the genetic architecture of severe obesity, we performed a genome-wide association study of 775 cases and 3197 unascertained controls at approximately 550,000 markers across the autosomal genome. We found convincing association to the previously described locus including the FTO gene. We also found evidence of association at a further six of 12 other loci previously reported to influence body mass index (BMI) in the general population and one of three associations to severe childhood and adult obesity and that cases have a higher proportion of risk-conferring alleles than controls. We found no evidence of homozygosity at any locus due to identity-by-descent associating with phenotype which would be indicative of rare, penetrant alleles, nor was there excess genome-wide homozygosity in cases relative to controls. Our results suggest that variants influencing BMI also contribute to severe obesity, a condition at the extreme of the phenotypic spectrum rather than a distinct condition.


Asunto(s)
Índice de Masa Corporal , Obesidad/genética , Polimorfismo de Nucleótido Simple , Adolescente , Adulto , Anciano , Estudios de Cohortes , Femenino , Marcadores Genéticos , Humanos , Masculino , Persona de Mediana Edad , Obesidad/fisiopatología , Fenotipo , Factores de Riesgo
13.
ESMO Open ; 5(2)2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32312757

RESUMEN

INTRODUCTION: Somatic mutations in STK11 and KEAP1, frequently comutated in non-squamous non-small cell lung cancer (NSQ NSCLC), have been associated with poor response to immune checkpoint blockade (ICB). However, previous reports lack non-ICB controls needed to properly ascertain the predictive nature of those biomarkers. The objective of this study was to evaluate the predictive versus prognostic effect of STK11 or KEAP1 mutations in NSQ NSCLC. METHODS: Patients diagnosed with stage IIIB, IIIC, IVA or IVB NSQ NSCLC from a real-world data cohort from the Flatiron Health Network linked with genetic testing from Foundation Medicine were retrospectively assessed. Real-world, progression-free survival (rwPFS) and overall survival (OS) were calculated from time of initiation of first-line treatment. RESULTS: We analysed clinical and mutational data for 2276 patients including patients treated with anti-programmed death-1 (PD-1)/anti-programmed death ligand 1 (PD-L1) inhibitors at first line (n=574). Mutations in STK11 or KEAP1 were associated with poor outcomes across multiple therapeutic classes and were not specifically associated with poor outcomes in ICB cohorts. There was no observable interaction between STK11 mutations and anti-PD-1/anti-PD-L1 treatment on rwPFS (HR, 1.05; 95% CI 0.76 to 1.44; p=0.785) or OS (HR, 1.13; 95% CI 0.76 to 1.67; p=0.540). Similarly, there was no observable interaction between KEAP1 mutations and treatment on rwPFS (HR, 0.93; 95% CI 0.67 to 1.28; p=0.653) or OS (HR, 0.98; 95% CI 0.66 to 1.45; p=0.913). CONCLUSION: Our results show that STK11-KEAP1 mutations are prognostic, not predictive, biomarkers for anti-PD-1/anti-PD-L1 therapy.


Asunto(s)
Adenocarcinoma/genética , Proteína 1 Asociada A ECH Tipo Kelch/genética , Neoplasias Pulmonares/genética , Proteínas Serina-Treonina Quinasas/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Biomarcadores de Tumor , Estudios de Cohortes , Femenino , Humanos , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Mutación , Pronóstico , Análisis de Supervivencia
14.
J Crohns Colitis ; 13(4): 462-471, 2019 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-30445421

RESUMEN

BACKGROUND: The molecular aetiology of inflammatory bowel disease [IBD] and its two subtypes, ulcerative colitis [UC] and Crohn's disease [CD], have been carefully investigated at genome and transcriptome levels. Recent advances in high-throughput proteome quantification has enabled comprehensive large-scale plasma proteomics studies of IBD. METHODS: The study used two cohorts: [1] The CERTIFI-cohort: 42 samples from the CERTIFI trial of anti-TNFα-refractory CD patients; [2] the PROgECT-UNITI-HCs cohort: 46 UC samples of the PROgECT study, 84 CD samples of the UNITI I and UNITI II studies, and 72 healthy controls recruited in Mount Sinai Hospital, New York, USA. The plasma proteome for these two cohorts was quantified using high-throughput platforms. RESULTS: For the PROgECT-UNITI-HCs cohort, we measured a total of 1310 proteins. Of these, 493 proteins showed different plasma levels in IBD patients to the plasma levels in controls at 10% false discovery rate [FDR], among which 11 proteins had a fold change greater than 2. The proteins upregulated in IBD were associated with immunity functionality, whereas the proteins downregulated in IBD were associated with nutrition and metabolism. The proteomic profiles were very similar between UC and CD. In the CERTIFI cohort, 1014 proteins were measured, and it was found that the plasma protein level had little correlation with the blood or intestine transcriptomes. CONCLUSIONS: We report the largest proteomics study to date on IBD and controls. A large proportion of plasma proteins are altered in IBD, which provides insights into the disease aetiology and indicates a potential for biomarker discovery.


Asunto(s)
Colitis Ulcerosa/sangre , Enfermedad de Crohn/sangre , Proteoma/metabolismo , Proteómica/métodos , ARN Mensajero/sangre , Transcriptoma , Proteína C-Reactiva/metabolismo , Estudios de Casos y Controles , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Bases de Datos Genéticas , Humanos , Mucosa Intestinal/metabolismo , Proteoma/genética , ARN Mensajero/metabolismo , Índice de Severidad de la Enfermedad
15.
NPJ Syst Biol Appl ; 3: 10, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28649437

RESUMEN

Gene expression data are routinely used to identify genes that on average exhibit different expression levels between a case and a control group. Yet, very few of such differentially expressed genes are detectably perturbed in individual patients. Here, we develop a framework to construct personalized perturbation profiles for individual subjects, identifying the set of genes that are significantly perturbed in each individual. This allows us to characterize the heterogeneity of the molecular manifestations of complex diseases by quantifying the expression-level similarities and differences among patients with the same phenotype. We show that despite the high heterogeneity of the individual perturbation profiles, patients with asthma, Parkinson and Huntington's disease share a broadpool of sporadically disease-associated genes, and that individuals with statistically significant overlap with this pool have a 80-100% chance of being diagnosed with the disease. The developed framework opens up the possibility to apply gene expression data in the context of precision medicine, with important implications for biomarker identification, drug development, diagnosis and treatment.

16.
Nat Genet ; 49(10): 1437-1449, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28892060

RESUMEN

A major challenge in inflammatory bowel disease (IBD) is the integration of diverse IBD data sets to construct predictive models of IBD. We present a predictive model of the immune component of IBD that informs causal relationships among loci previously linked to IBD through genome-wide association studies (GWAS) using functional and regulatory annotations that relate to the cells, tissues, and pathophysiology of IBD. Our model consists of individual networks constructed using molecular data generated from intestinal samples isolated from three populations of patients with IBD at different stages of disease. We performed key driver analysis to identify genes predicted to modulate network regulatory states associated with IBD, prioritizing and prospectively validating 12 of the top key drivers experimentally. This validated key driver set not only introduces new regulators of processes central to IBD but also provides the integrated circuits of genetic, molecular, and clinical traits that can be directly queried to interrogate and refine the regulatory framework defining IBD.


Asunto(s)
Redes Reguladoras de Genes , Genes Reguladores , Genómica/métodos , Enfermedades Inflamatorias del Intestino/genética , Modelos Genéticos , Traslado Adoptivo , Animales , Causalidad , Células Cultivadas , Colitis/inducido químicamente , Colitis/genética , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Interferente Pequeño/genética , Subgrupos de Linfocitos T/trasplante , Transcriptoma
17.
Genome Biol ; 17: 79, 2016 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-27140173

RESUMEN

BACKGROUND: Although genome-wide association studies (GWAS) have identified over 100 genetic loci associated with rheumatoid arthritis (RA), our ability to translate these results into disease understanding and novel therapeutics is limited. Most RA GWAS loci reside outside of protein-coding regions and likely affect distal transcriptional enhancers. Furthermore, GWAS do not identify the cell types where the associated causal gene functions. Thus, mapping the transcriptional regulatory roles of GWAS hits and the relevant cell types will lead to better understanding of RA pathogenesis. RESULTS: We combine the whole-genome sequences and blood transcription profiles of 377 RA patients and identify over 6000 unique genes with expression quantitative trait loci (eQTLs). We demonstrate the quality of the identified eQTLs through comparison to non-RA individuals. We integrate the eQTLs with immune cell epigenome maps, RA GWAS risk loci, and adjustment for linkage disequilibrium to propose target genes of immune cell enhancers that overlap RA risk loci. We examine 20 immune cell epigenomes and perform a focused analysis on primary monocytes, B cells, and T cells. CONCLUSIONS: We highlight cell-specific gene associations with relevance to RA pathogenesis including the identification of FCGR2B in B cells as possessing both intragenic and enhancer regulatory GWAS hits. We show that our RA patient cohort derived eQTL network is more informative for studying RA than that from a healthy cohort. While not experimentally validated here, the reported eQTLs and cell type-specific RA risk associations can prioritize future experiments with the goal of elucidating the regulatory mechanisms behind genetic risk associations.


Asunto(s)
Artritis Reumatoide/genética , Epigénesis Genética , Genoma Humano , Linfocitos/metabolismo , Sitios de Carácter Cuantitativo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Linfocitos/clasificación , Masculino , Persona de Mediana Edad , Receptores de IgG/genética
18.
Clin Transl Gastroenterol ; 7(6): e177, 2016 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-27336838

RESUMEN

OBJECTIVES: Genome-wide association studies (GWAS) have identified loci reproducibly associated with inflammatory bowel disease (IBD) and other immune-mediated diseases; however, the molecular mechanisms underlying most of genetic susceptibility remain undefined. Expressional quantitative trait loci (eQTL) of disease-relevant tissue can be employed in order to elucidate the genes and pathways affected by disease-specific genetic variance. METHODS: In this study, we derived eQTLs for human whole blood and intestine tissues of anti-tumor necrosis factor-resistant Crohn's disease (CD) patients. We interpreted these eQTLs in the context of published IBD GWAS hits to inform on the disease process. RESULTS: At 10% false discovery rate, we discovered that 5,174 genes in blood and 2,063 genes in the intestine were controlled by a nearby single-nucleotide polymorphism (SNP) (i.e., cis-eQTL), among which 1,360 were shared between the two tissues. A large fraction of the identified eQTLs were supported by the regulomeDB database, showing that the eQTLs reside in regulatory elements (odds ratio; OR=3.44 and 3.24 for blood and intestine eQTLs, respectively) as opposed to protein-coding regions. Published IBD GWAS hits as a whole were enriched for blood and intestine eQTLs (OR=2.88 and 2.05; and P value=2.51E-9 and 0.013, respectively), thereby linking genetic susceptibility to control of gene expression in these tissues. Through a systematic search, we used eQTL data to inform 109 out of 372 IBD GWAS SNPs documented in National Human Genome Research Institute catalog, and we categorized the genes influenced by eQTLs according to their functions. Many of these genes have experimentally validated roles in specific cell types contributing to intestinal inflammation. CONCLUSIONS: The blood and intestine eQTLs described in this study represent a powerful tool to link GWAS loci to a regulatory function and thus elucidate the mechanisms underlying the genetic loci associated with IBD and related conditions. Overall, our eQTL discovery approach empirically identifies the disease-associated variants including their impact on the direction and extent of expression changes in the context of disease-relevant cellular pathways in order to infer the functional outcome of this aspect of genetic susceptibility.

19.
Cell Syst ; 1(4): 302-305, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26594663

RESUMEN

Networks are a powerful and flexible methodology for expressing biological knowledge for computation and communication. Network-encoded information can include systematic screens for molecular interactions, biological relationships curated from literature, and outputs from analysis of Big Data. NDEx, the Network Data Exchange (www.ndexbio.org), is an online commons where scientists can upload, share, and publicly distribute networks. Networks in NDEx receive globally unique accession IDs and can be stored for private use, shared in pre-publication collaboration, or released for public access. Standard and novel data formats are accommodated in a flexible storage model. Organizations can use NDEx as a distribution channel for networks they generate or curate. Developers of bioinformatic applications can store and query NDEx networks via a common programmatic interface. NDEx helps expand the role of networks in scientific discourse and facilitates the integration of networks as data in publications. It is a step towards an ecosystem in which networks bearing data, hypotheses, and findings flow easily between scientists.

20.
Circ Cardiovasc Genet ; 8(2): 305-15, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25578447

RESUMEN

BACKGROUND: Despite recent discoveries of new genetic risk factors, the majority of risk for coronary artery disease (CAD) remains elusive. As the most proximal sensor of DNA variation, RNA abundance can help identify subpopulations of genetic variants active in and across tissues mediating CAD risk through gene expression. METHODS AND RESULTS: By generating new genomic data on DNA and RNA samples from the Stockholm Atherosclerosis Gene Expression (STAGE) study, 8156 cis-acting expression quantitative trait loci (eQTLs) for 6450 genes across 7 CAD-relevant tissues were detected. The inherited risk enrichments of tissue-defined sets of these eQTLs were assessed using 2 independent genome-wide association data sets. eQTLs acting across increasing numbers of tissues were found increasingly enriched for CAD risk and resided at regulatory hot spots. The risk enrichment of 42 eQTLs acting across 5 to 6 tissues was particularly high (≤7.3-fold) and confirmed in the combined genome-wide association data from Coronary Artery Disease Genome Wide Replication And Meta-Analysis Consortium. Sixteen of the 42 eQTLs associated with 19 master regulatory genes and 29 downstream gene sets (n>30) were further risk enriched comparable to that of the 153 genome-wide association risk single-nucleotide polymorphisms established for CAD (8.4-fold versus 10-fold). Three gene sets, governed by the master regulators FLYWCH1, PSORSIC3, and G3BP1, segregated the STAGE patients according to extent of CAD, and small interfering RNA targeting of these master regulators affected cholesterol-ester accumulation in foam cells of the THP1 monocytic cell line. CONCLUSIONS: eQTLs acting across multiple tissues are significant carriers of inherited risk for CAD. FLYWCH1, PSORSIC3, and G3BP1 are novel master regulatory genes in CAD that may be suitable targets.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Bases de Datos Genéticas , Regulación de la Expresión Génica , Proteínas Musculares , Sitios de Carácter Cuantitativo , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Proteínas Musculares/biosíntesis , Proteínas Musculares/genética , Especificidad de Órganos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA