Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 20(4): 2264-2270, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32168456

RESUMEN

Super-resolution imaging allows for the visualization of cellular structures on a nanoscale level. DNA-PAINT (DNA point accumulation in nanoscale topology) is a super-resolution method that depends on the binding and unbinding of DNA imager strands. The current DNA-PAINT technique suffers from slow acquisition due to the low binding rate of the imager strands. Here we report on a method where imager strands are loaded into a protein, Argonaute (Ago), which allows for faster binding. Ago preorders the DNA imager strand into a helical conformation, allowing for 10 times faster target binding. Using a 2D DNA origami structure, we demonstrate that Ago-assisted DNA-PAINT (Ago-PAINT) can speed up the current DNA-PAINT technique by an order of magnitude, while maintaining the high spatial resolution. We envision this tool to be useful for super-resolution imaging and other techniques that rely on nucleic acid interactions.


Asunto(s)
Proteínas Argonautas/análisis , Proteínas Bacterianas/análisis , Clostridium butyricum/química , ADN/análisis , Imagen Óptica/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Fluorescente/métodos , Nanoestructuras/química
2.
Proc Natl Acad Sci U S A ; 113(18): 4982-7, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27091987

RESUMEN

In all organisms, DNA molecules are tightly compacted into a dynamic 3D nucleoprotein complex. In bacteria, this compaction is governed by the family of nucleoid-associated proteins (NAPs). Under conditions of stress and starvation, an NAP called Dps (DNA-binding protein from starved cells) becomes highly up-regulated and can massively reorganize the bacterial chromosome. Although static structures of Dps-DNA complexes have been documented, little is known about the dynamics of their assembly. Here, we use fluorescence microscopy and magnetic-tweezers measurements to resolve the process of DNA compaction by Dps. Real-time in vitro studies demonstrated a highly cooperative process of Dps binding characterized by an abrupt collapse of the DNA extension, even under applied tension. Surprisingly, we also discovered a reproducible hysteresis in the process of compaction and decompaction of the Dps-DNA complex. This hysteresis is extremely stable over hour-long timescales despite the rapid binding and dissociation rates of Dps. A modified Ising model is successfully applied to fit these kinetic features. We find that long-lived hysteresis arises naturally as a consequence of protein cooperativity in large complexes and provides a useful mechanism for cells to adopt unique epigenetic states.


Asunto(s)
Proteínas Bacterianas/química , ADN Bacteriano/química , Proteínas de Unión al ADN/química , Modelos Teóricos , Concentración de Iones de Hidrógeno , Magnesio/química , Sales (Química)/química
3.
Biophys J ; 109(10): 2113-25, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26588570

RESUMEN

The observation of biological processes at the molecular scale in real time requires high spatial and temporal resolution. Magnetic tweezers are straightforward to implement, free of radiation or photodamage, and provide ample multiplexing capability, but their spatiotemporal resolution has lagged behind that of other single-molecule manipulation techniques, notably optical tweezers and AFM. Here, we present, to our knowledge, a new high-resolution magnetic tweezers apparatus. We systematically characterize the achievable spatiotemporal resolution for both incoherent and coherent light sources, different types and sizes of beads, and different types and lengths of tethered molecules. Using a bright coherent laser source for illumination and tracking at 6 kHz, we resolve 3 Å steps with a 1 s period for surface-melted beads and 5 Å steps with a 0.5 s period for double-stranded-dsDNA-tethered beads, in good agreement with a model of stochastic bead motion in the magnetic tweezers. We demonstrate how this instrument can be used to monitor the opening and closing of a DNA hairpin on millisecond timescales in real time, together with attendant changes in the hairpin dynamics upon the addition of deoxythymidine triphosphate. Our approach opens up the possibility of observing biological events at submillisecond timescales with subnanometer resolution using camera-based detection.


Asunto(s)
ADN/química , Campos Magnéticos , Imagen Óptica/métodos , Pinzas Ópticas , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Imagen Óptica/instrumentación , Imagen Óptica/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA