Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(5): 1267-1281, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36353841

RESUMEN

Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.


Asunto(s)
Secuestro de Carbono , Ecosistema , Suelo , Dióxido de Carbono/análisis , Tundra , Regiones Árticas , Ciclo del Carbono , Plantas , Carbono/análisis
2.
Nature ; 501(7465): 88-92, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-24005415

RESUMEN

Temperature data over the past five decades show faster warming of the global land surface during the night than during the day. This asymmetric warming is expected to affect carbon assimilation and consumption in plants, because photosynthesis in most plants occurs during daytime and is more sensitive to the maximum daily temperature, Tmax, whereas plant respiration occurs throughout the day and is therefore influenced by both Tmax and the minimum daily temperature, Tmin. Most studies of the response of terrestrial ecosystems to climate warming, however, ignore this asymmetric forcing effect on vegetation growth and carbon dioxide (CO2) fluxes. Here we analyse the interannual covariations of the satellite-derived normalized difference vegetation index (NDVI, an indicator of vegetation greenness) with Tmax and Tmin over the Northern Hemisphere. After removing the correlation between Tmax and Tmin, we find that the partial correlation between Tmax and NDVI is positive in most wet and cool ecosystems over boreal regions, but negative in dry temperate regions. In contrast, the partial correlation between Tmin and NDVI is negative in boreal regions, and exhibits a more complex behaviour in dry temperate regions. We detect similar patterns in terrestrial net CO2 exchange maps obtained from a global atmospheric inversion model. Additional analysis of the long-term atmospheric CO2 concentration record of the station Point Barrow in Alaska suggests that the peak-to-peak amplitude of CO2 increased by 23 ± 11% for a +1 °C anomaly in Tmax from May to September over lands north of 51° N, but decreased by 28 ± 14% for a +1 °C anomaly in Tmin. These lines of evidence suggest that asymmetric diurnal warming, a process that is currently not taken into account in many global carbon cycle models, leads to a divergent response of Northern Hemisphere vegetation growth and carbon sequestration to rising temperatures.


Asunto(s)
Oscuridad , Geografía , Calentamiento Global , Plantas/metabolismo , Carbono/metabolismo , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Respiración de la Célula , Ritmo Circadiano , Ecosistema , Fotosíntesis/efectos de la radiación , Plantas/efectos de la radiación , Luz Solar , Temperatura
3.
Glob Chang Biol ; 23(2): 512-533, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27447350

RESUMEN

In the light of daunting global sustainability challenges such as climate change, biodiversity loss and food security, improving our understanding of the complex dynamics of the Earth system is crucial. However, large knowledge gaps related to the effects of land management persist, in particular those human-induced changes in terrestrial ecosystems that do not result in land-cover conversions. Here, we review the current state of knowledge of ten common land management activities for their biogeochemical and biophysical impacts, the level of process understanding and data availability. Our review shows that ca. one-tenth of the ice-free land surface is under intense human management, half under medium and one-fifth under extensive management. Based on our review, we cluster these ten management activities into three groups: (i) management activities for which data sets are available, and for which a good knowledge base exists (cropland harvest and irrigation); (ii) management activities for which sufficient knowledge on biogeochemical and biophysical effects exists but robust global data sets are lacking (forest harvest, tree species selection, grazing and mowing harvest, N fertilization); and (iii) land management practices with severe data gaps concomitant with an unsatisfactory level of process understanding (crop species selection, artificial wetland drainage, tillage and fire management and crop residue management, an element of crop harvest). Although we identify multiple impediments to progress, we conclude that the current status of process understanding and data availability is sufficient to advance with incorporating management in, for example, Earth system or dynamic vegetation models in order to provide a systematic assessment of their role in the Earth system. This review contributes to a strategic prioritization of research efforts across multiple disciplines, including land system research, ecological research and Earth system modelling.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Biodiversidad , Ecosistema , Árboles
4.
Sci Rep ; 12(1): 3986, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314726

RESUMEN

Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.


Asunto(s)
Secuestro de Carbono , Ecosistema , Regiones Árticas , Dióxido de Carbono , Cambio Climático , Plantas , Estaciones del Año , Suelo , Tundra
5.
Ecol Appl ; 18(6): 1406-19, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18767619

RESUMEN

Flux measurements of carbon dioxide and water vapor above tropical rain forests are often difficult to interpret because the terrain is usually complex. This complexity induces heterogeneity in the surface but also affects lateral movement of carbon dioxide (CO2) not readily detected by the eddy covariance systems. This study describes such variability using measurements of CO2 along vertical profiles and along a toposequence in a tropical rain forest near Manaus, Brazil. Seasonal and diurnal variation was recorded, with atmospheric CO2 concentration maxima around dawn, generally higher CO2 build-up in the dry season and stronger daytime CO2 drawdown in the wet season. This variation was reflected all along the toposequence, but the slope and valley bottom accumulated clearly more CO2 than the plateaus, depending on atmospheric stability. Particularly during stable nights, accumulation was along lines of equal altitude, suggesting that large amounts of CO2 are stored in the valleys of the landscape. Flushing of this store only occurs during mid-morning, when stored CO2 may well be partly transported back to the plateaus. It is clear that, for proper interpretation of tower fluxes in such complex and actively respiring terrain, the horizontal variability of storage needs to be taken into account not only during the night but also during the mornings.


Asunto(s)
Movimientos del Aire , Dióxido de Carbono/análisis , Ecosistema , Monitoreo del Ambiente , Árboles/metabolismo , Brasil , Dióxido de Carbono/metabolismo , Ritmo Circadiano , Geografía , Estaciones del Año , Clima Tropical
6.
PLoS One ; 8(2): e57599, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23451249

RESUMEN

Satellite observations identify the Mongolian steppes as a hotspot of global biomass reduction, the extent of which is comparable with tropical rainforest deforestation. To conserve or restore these grasslands, the relative contributions of climate and human activities to degradation need to be understood. Here we use a recently developed 21-year (1988-2008) record of satellite based vegetation optical depth (VOD, a proxy for vegetation water content and aboveground biomass), to show that nearly all steppe grasslands in Mongolia experienced significant decreases in VOD. Approximately 60% of the VOD declines can be directly explained by variations in rainfall and surface temperature. After removing these climate induced influences, a significant decreasing trend still persists in the VOD residuals across regions of Mongolia. Correlations in spatial patterns and temporal trends suggest that a marked increase in goat density with associated grazing pressures and wild fires are the most likely non-climatic factors behind grassland degradation.


Asunto(s)
Biomasa , Cambio Climático , Ecosistema , Actividades Humanas , Clima , Humanos , Mongolia , Temperatura , Agua
7.
Acta amaz ; 42(2): 173-184, June 2012. ilus, tab
Artículo en Inglés | LILACS | ID: lil-616878

RESUMEN

Soil respiration plays a significant role in the carbon cycle of Amazonian rainforests. Measurements of soil respiration have only been carried out in few places in the Amazon. This study investigated the effects of the method of ring insertion in the soil as well as of rainfall and spatial distribution on CO2 emission in the central Amazon region. The ring insertion effect increased the soil emission about 13-20 percent for sandy and loamy soils during the firsts 4-7 hours, respectively. After rainfall events below 2 mm, the soil respiration did not change, but for rainfall greater than 3 mm, after 2 hours there was a decrease in soil temperature and respiration of about 10-34 percent for the loamy and sand soils, with emissions returning to normal after around 15-18 hours. The size of the measurement areas and the spatial distribution of soil respiration were better estimated using the Shuttle Radar Topographic Mission (SRTM) data. The Campina reserve is a mosaic of bare soil, stunted heath forest-SHF and tall heath forest-THF. The estimated total average CO2 emissions from the area was 3.08±0.8 µmol CO2 m-2 s-1. The Cuieiras reserve is another mosaic of plateau, slope, Campinarana and riparian forests and the total average emission from the area was 3.82±0.76 µmol CO2 m-2 s-1. We also found that the main control factor of the soil respiration was soil temperature, with 90 percent explained by regression analysis. Automated soil respiration datasets are a good tool to improve the technique and increase the reliability of measurements to allow a better understanding of all possible factors driven by soil respiration processes.


Respiração do solo possui um importante papel no ciclo do carbono em florestas tropicais Amazônicas. Entretanto poucas medidas de respiração do solo foram feitas. Neste estudo são apontados os efeitos na metodologia de instalação dos anéis no solo, bem como os efeitos da precipitação e a distribuição espacial da emissão de CO2 na Amazônia central. Os efeitos da inserção de anéis no solo aumentaram de 13 a 20 por cento para o solo arenoso e argiloso, o efeito durou de 4 a 7 horas, respectivamente. Já os efeitos na precipitação, notamos que os eventos abaixo de 2 mm a respiração do solo permaneceu indiferente, mas para precipitação acima de 3 mm, 2 horas depois, houve uma diminuição da temperatura e respiração em 10 a 34 por cento para o solo argilosos e arenosos, retornando a emissão normal após 15 a 18 horas. Para estimar a distribuição espacial da respiração do solo e o tamanho correto das áreas medidas, foram utilizadas as imagens do Shuttle Radar Topographic Mission (SRTM). Considerando que a Reserva de Campina é um mosaico de solo desnudo, floresta alagável de baixa e alta estatura (SHF e THF). A emissão total média de CO2 para a área foi de 3.08±0.8 µmol CO2 m-2 s-1. Já a Reserva do Cuieiras possui outro mosaico de florestas de platôs, encostas, Campinaranas e riparias, sendo a emissão média total desta área foram de 3.82±0.76 µmol CO2 m-2 s-1. Encontramos também que a respiração do solo foi controlada pela temperatura do solo, sendo uma correlação de 90 por cento encontrada pela análise de regressão. Dados obtidos com sistema automático de respiração do solo é uma grande oportunidade de melhoramento da técnica e o aumento da confiança nas medidas em relação aos possíveis fatores que controlam os processos de emissão de CO2 do solo.


Asunto(s)
Suelo , Temperatura , Precipitación Atmosférica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA