Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 29(12): 1950-1968, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31943058

RESUMEN

The link between mutations associated with intellectual disability (ID) and the mechanisms underlying cognitive dysfunctions remains largely unknown. Here, we focused on PAK3, a serine/threonine kinase whose gene mutations cause X-linked ID. We generated a new mutant mouse model bearing the missense R67C mutation of the Pak3 gene (Pak3-R67C), known to cause moderate to severe ID in humans without other clinical signs and investigated hippocampal-dependent memory and adult hippocampal neurogenesis. Adult male Pak3-R67C mice exhibited selective impairments in long-term spatial memory and pattern separation function, suggestive of altered hippocampal neurogenesis. A delayed non-matching to place paradigm testing memory flexibility and proactive interference, reported here as being adult neurogenesis-dependent, revealed a hypersensitivity to high interference in Pak3-R67C mice. Analyzing adult hippocampal neurogenesis in Pak3-R67C mice reveals no alteration in the first steps of adult neurogenesis, but an accelerated death of a population of adult-born neurons during the critical period of 18-28 days after their birth. We then investigated the recruitment of hippocampal adult-born neurons after spatial memory recall. Post-recall activation of mature dentate granule cells in Pak3-R67C mice was unaffected, but a complete failure of activation of young DCX + newborn neurons was found, suggesting they were not recruited during the memory task. Decreased expression of the KCC2b chloride cotransporter and altered dendritic development indicate that young adult-born neurons are not fully functional in Pak3-R67C mice. We suggest that these defects in the dynamics and learning-associated recruitment of newborn hippocampal neurons may contribute to the selective cognitive deficits observed in this mouse model of ID.


Asunto(s)
Disfunción Cognitiva/genética , Discapacidad Intelectual/genética , Quinasas p21 Activadas/genética , Animales , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Proteína Doblecortina , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Discapacidad Intelectual/patología , Masculino , Ratones , Mutación/genética , Neurogénesis/genética , Neuronas/metabolismo , Neuronas/patología
2.
Stem Cells ; 36(5): 761-774, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29359518

RESUMEN

The subventricular zone (SVZ) is the major stem cell niche in the brain of adult mammals. Within this region, neural stem cells (NSC) proliferate, self-renew and give birth to neurons and glial cells. Previous studies underlined enrichment in calcium signaling-related transcripts in adult NSC. Because of their ability to mobilize sustained calcium influxes in response to a wide range of extracellular factors, store-operated channels (SOC) appear to be, among calcium channels, relevant candidates to induce calcium signaling in NSC whose cellular activities are continuously adapted to physiological signals from the microenvironment. By Reverse Transcription Polymerase Chain Reaction (RT-PCR), Western blotting and immunocytochemistry experiments, we demonstrate that SVZ cells express molecular actors known to build up SOC, namely transient receptor potential canonical 1 (TRPC1) and Orai1, as well as their activator stromal interaction molecule 1 (STIM1). Calcium imaging reveals that SVZ cells display store-operated calcium entries. Pharmacological blockade of SOC with SKF-96365 or YM-58483 (also called BTP2) decreases proliferation, impairs self-renewal by shifting the type of SVZ stem cell division from symmetric proliferative to asymmetric, thereby reducing the stem cell population. Brain section immunostainings show that TRPC1, Orai1, and STIM1 are expressed in vivo, in SOX2-positive SVZ NSC. Injection of SKF-96365 in brain lateral ventricle diminishes SVZ cell proliferation and reduces the ability of SVZ cells to form neurospheres in vitro. The present study combining in vitro and in vivo approaches uncovers a major role for SOC in the control of SVZ NSC population and opens new fields of investigation for stem cell biology in health and disease. Stem Cells 2018;36:761-774.


Asunto(s)
Encéfalo/citología , Calcio/metabolismo , Autorrenovación de las Células/fisiología , Células-Madre Neurales/citología , Células Madre Adultas/metabolismo , Animales , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Proliferación Celular/fisiología , Ratones Endogámicos C57BL , Neurogénesis/fisiología , Neuronas/metabolismo
3.
J Biol Chem ; 287(36): 30084-96, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22815483

RESUMEN

p21-activated kinase 1 (PAK1) and PAK3 belong to group I of the PAK family and control cell movement and division. They also regulate dendritic spine formation and maturation in the brain, and play a role in synaptic transmission and synaptic plasticity. PAK3, in particular, is known for its implication in X-linked intellectual disability. The pak3 gene is expressed in neurons as a GTPase-regulated PAK3a protein and also as three splice variants which display constitutive kinase activity. PAK1 regulation is based on its homodimerization, forming an inactive complex. Here, we analyze the PAK3 capacity to dimerize and show that although PAK3a is able to homodimerize, it is more likely to form heterodimeric complexes with PAK1. We further show that two intellectual disability mutations impair dimerization with PAK1. The b and c inserts present in the regulatory domain of PAK3 splice variants decrease the dimerization but retain the capacity to form heterodimers with PAK1. PAK1 and PAK3 are co-expressed in neurons, are colocalized within dendritic spines, co-purify with post-synaptic densities, and co-immunoprecipitate in brain lysates. Using kinase assays, we demonstrate that PAK1 inhibits the activity of PAK3a but not of the splice variant PAK3b in a trans-regulatory manner. Altogether, these results show that PAK3 and PAK1 signaling may be coordinated by heterodimerization.


Asunto(s)
Espinas Dendríticas/enzimología , Proteínas del Tejido Nervioso/metabolismo , Densidad Postsináptica/enzimología , Multimerización de Proteína , Quinasas p21 Activadas/metabolismo , Empalme Alternativo/genética , Animales , Activación Enzimática/genética , Regulación Enzimológica de la Expresión Génica/genética , Enfermedades Genéticas Ligadas al Cromosoma X/enzimología , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Células HeLa , Humanos , Discapacidad Intelectual/enzimología , Discapacidad Intelectual/genética , Ratones , Mutación , Proteínas del Tejido Nervioso/genética , Estructura Terciaria de Proteína , Transducción de Señal/genética , Quinasas p21 Activadas/genética
4.
J Biol Chem ; 286(46): 40044-59, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21949127

RESUMEN

Mutations in the p21-activated kinase 3 gene (pak3) are responsible for nonsyndromic forms of mental retardation. Expression of mutated PAK3 proteins in hippocampal neurons induces abnormal dendritic spine morphology and long term potentiation anomalies, whereas pak3 gene invalidation leads to cognitive impairments. How PAK3 regulates synaptic plasticity is still largely unknown. To better understand how PAK3 affects neuronal synaptic plasticity, we focused on its interaction with the Nck adaptors that play a crucial role in PAK signaling. We report here that PAK3 interacts preferentially with Nck2/Grb4 in brain extracts and in transfected cells. This interaction is independent of PAK3 kinase activity. Selective uncoupling of the Nck2 interactions in acute cortical slices using an interfering peptide leads to a rapid increase in evoked transmission to pyramidal neurons. The P12A mutation in the PAK3 protein strongly decreases the interaction with Nck2 but only slightly with Nck1. In transfected hippocampal cultures, expression of the P12A-mutated protein has no effect on spine morphogenesis or synaptic density. The PAK3-P12A mutant does not affect synaptic transmission, whereas the expression of the wild-type PAK3 protein decreases the amplitude of spontaneous miniature excitatory currents. Altogether, these data show that PAK3 down-regulates synaptic transmission through its interaction with Nck2.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Oncogénicas/metabolismo , Transmisión Sináptica/fisiología , Quinasas p21 Activadas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Sustitución de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Mutación Missense , Proteínas Oncogénicas/genética , Quinasas p21 Activadas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA