Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
PLoS Biol ; 19(2): e3001091, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33630831

RESUMEN

The recent emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the underlying cause of Coronavirus Disease 2019 (COVID-19), has led to a worldwide pandemic causing substantial morbidity, mortality, and economic devastation. In response, many laboratories have redirected attention to SARS-CoV-2, meaning there is an urgent need for tools that can be used in laboratories unaccustomed to working with coronaviruses. Here we report a range of tools for SARS-CoV-2 research. First, we describe a facile single plasmid SARS-CoV-2 reverse genetics system that is simple to genetically manipulate and can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids). The rescue system is accompanied by our panel of SARS-CoV-2 antibodies (against nearly every viral protein), SARS-CoV-2 clinical isolates, and SARS-CoV-2 permissive cell lines, which are all openly available to the scientific community. Using these tools, we demonstrate here that the controversial ORF10 protein is expressed in infected cells. Furthermore, we show that the promising repurposed antiviral activity of apilimod is dependent on TMPRSS2 expression. Altogether, our SARS-CoV-2 toolkit, which can be directly accessed via our website at https://mrcppu-covid.bio/, constitutes a resource with considerable potential to advance COVID-19 vaccine design, drug testing, and discovery science.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19/diagnóstico , COVID-19/virología , Genética Inversa , SARS-CoV-2/genética , Células A549 , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Chlorocebus aethiops , Codón , Humanos , Hidrazonas/farmacología , Ratones , Morfolinas/farmacología , Sistemas de Lectura Abierta , Plásmidos/genética , Pirimidinas/farmacología , Serina Endopeptidasas/metabolismo , Células Vero , Proteínas Virales/metabolismo
2.
Glia ; 69(8): 2023-2036, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33942402

RESUMEN

Some children with proven intrauterine Zika virus (ZIKV) infection who were born asymptomatic subsequently manifested neurodevelopmental delays, pointing to impairment of development perinatally and postnatally. To model this, we infected postnatal day (P) 5-6 (equivalent to the perinatal period in humans) susceptible mice with a mammalian cell-propagated ZIKV clinical isolate from the Brazilian outbreak in 2015. All infected mice appeared normal up to 4 days post-intraperitoneal inoculation (dpi), but rapidly developed severe clinical signs at 5-6 dpi. All nervous tissue examined at 5/6 dpi appeared grossly normal. However, anti-ZIKV positive cells were observed in the optic nerve, brain, and spinal cord; predominantly in white matter. Co-labeling with cell type specific markers demonstrated oligodendrocytes and astrocytes support productive infection. Rarely, ZIKV positive neurons were observed. In spinal cord white matter, which we examined in detail, apoptotic cells were evident; the density of oligodendrocytes was significantly reduced; and there was localized microglial reactivity including expression of the NLRP3 inflammasome. Together, our observations demonstrate that a clinically relevant ZIKV isolate can directly impact oligodendrocytes. As primary oligodendrocyte cell death can lead later to secondary autoimmune demyelination, our observations may help explain neurodevelopmental delays in infants appearing asymptomatic at birth and commend lifetime surveillance.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Neuronas , Oligodendroglía , Embarazo , Infección por el Virus Zika/complicaciones
3.
J Gen Virol ; 102(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34816792

RESUMEN

Several viruses, including human cytomegalovirus (HCMV), are thought to replicate in the placenta. However, there is little understanding of the molecular mechanisms involved in HCMV replication in this tissue. We investigated replication of HCMV in the extravillous trophoblast cell line SGHPL-4, a commonly used model of HCMV replication in the placenta. We found limited HCMV protein expression and virus replication in SGHPL-4 cells. This was associated with a lack of trophoblast progenitor cell protein markers in SGHPL-4 cells, suggesting a relationship between trophoblast differentiation and limited HCMV replication. We proposed that limited HCMV replication in trophoblast cells is advantageous to vertical transmission of HCMV, as there is a greater opportunity for vertical transmission when the placenta is intact and functional. Furthermore, when we investigated the replication of other vertically transmitted viruses in SGHPL-4 cells we found some limitation to replication of Zika virus, but not herpes simplex virus. Thus, limited replication of some, but not all, vertically transmitted viruses may be a feature of trophoblast cells.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Trofoblastos/virología , Replicación Viral , Línea Celular , Citomegalovirus/genética , Infecciones por Citomegalovirus/transmisión , Femenino , Humanos , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Placenta/virología , Embarazo
4.
Eur J Immunol ; 48(7): 1120-1136, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29572905

RESUMEN

Zika virus (ZIKV) is a major public health concern in the Americas. We report that ZIKV infection and RNA extracted from ZIKV infected cells potently activated the induction of type I interferons (IFNs). This effect was fully dependent on the mitochondrial antiviral signaling protein (MAVS), implicating RIG-I-like receptors (RLRs) as upstream sensors of viral RNA. Indeed, RIG-I and the related RNA sensor MDA5 contributed to type I IFN induction in response to RNA from infected cells. We found that ZIKV NS5 from a recent Brazilian isolate blocked type I IFN induction downstream of RLRs and also inhibited type I IFN receptor (IFNAR) signaling. We defined the ZIKV NS5 nuclear localization signal and report that NS5 nuclear localization was not required for inhibition of signaling downstream of IFNAR. Mechanistically, NS5 blocked IFNAR signaling by both leading to reduced levels of STAT2 and by blocking phosphorylation of STAT1, two transcription factors activated by type I IFNs. Taken together, our observations suggest that ZIKV infection induces a type I IFN response via RLRs and that ZIKV interferes with this response by blocking signaling downstream of RLRs and IFNAR.


Asunto(s)
Proteína 58 DEAD Box/inmunología , Interferón Tipo I/metabolismo , ARN/inmunología , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Transporte Activo de Núcleo Celular , Brasil , Proteína 58 DEAD Box/genética , Regulación hacia Abajo , Células HEK293 , Humanos , Interferón Tipo I/genética , Fosforilación , Receptores Inmunológicos , Transducción de Señal , Replicación Viral , Virus Zika , Infección por el Virus Zika
5.
J Gen Virol ; 99(2): 219-229, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29239715

RESUMEN

Ensuring the virological safety of biologicals is challenging due to the risk of viral contamination of raw materials and cell banks, and exposure during in-process handling to known and/or emerging viral pathogens. Viruses may contaminate raw materials and biologicals intended for human or veterinary use and remain undetected until appropriate testing measures are employed. The outbreak and expansive spread of the mosquito-borne flavivirus Zika virus (ZIKV) poses challenges to screening human- and animal -derived products used in the manufacture of biologicals. Here, we report the results of an in vitro study where detector cell lines were challenged with African and Asian lineages of ZIKV. We demonstrate that this pathogen is robustly detectable by in vitro assay, thereby providing assurance of detection of ZIKV, and in turn underpinning the robustness of in vitro virology assays in safety testing of biologicals.


Asunto(s)
Productos Biológicos/normas , Contaminación de Medicamentos/prevención & control , Infección por el Virus Zika/virología , Virus Zika/aislamiento & purificación , Animales , Línea Celular , Chlorocebus aethiops , Efecto Citopatogénico Viral , Humanos , Riesgo , Células Vero , Infección por el Virus Zika/transmisión
6.
Cell Microbiol ; 19(5)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28273394

RESUMEN

The Flavivirus genus (Flaviviridae family) contains a number of important human pathogens, including dengue and Zika viruses, which have the potential to cause severe disease. In order to efficiently establish a productive infection in mammalian cells, flaviviruses have developed key strategies to counteract host immune defences, including the type I interferon response. They employ different mechanisms to control interferon signal transduction and effector pathways, and key research generated over the past couple of decades has uncovered new insights into their abilities to actively decrease interferon antiviral activity. Given the lack of antivirals or prophylactic treatments for many flaviviral infections, it is important to fully understand how these viruses affect cellular processes to influence pathogenesis and disease outcome. This review will discuss the strategies mosquito-borne flaviviruses have evolved to antagonise type I interferon mediated immune responses.


Asunto(s)
Infecciones por Flavivirus/virología , Flavivirus/fisiología , Interferón Tipo I/genética , Proteínas no Estructurales Virales/fisiología , Animales , Culicidae/virología , Infecciones por Flavivirus/inmunología , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Insectos Vectores/virología , Interferón Tipo I/metabolismo , Activación Transcripcional/inmunología
7.
J Gen Virol ; 94(Pt 7): 1680-1689, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23559478

RESUMEN

The exogenous siRNA pathway is important in restricting arbovirus infection in mosquitoes. Less is known about the role of the PIWI-interacting RNA pathway, or piRNA pathway, in antiviral responses. Viral piRNA-like molecules have recently been described following infection of mosquitoes and derived cell lines with several arboviruses. The piRNA pathway has thus been suggested to function as an additional small RNA-mediated antiviral response to the known infection-induced siRNA response. Here we show that piRNA-like molecules are produced following infection with the naturally mosquito-borne Semliki Forest virus in mosquito cell lines. We show that knockdown of piRNA pathway proteins enhances the replication of this arbovirus and defines the contribution of piRNA pathway effectors, thus characterizing the antiviral properties of the piRNA pathway. In conclusion, arbovirus infection can trigger the piRNA pathway in mosquito cells, and knockdown of piRNA proteins enhances virus production.


Asunto(s)
Aedes/virología , Antivirales/metabolismo , Proteínas de Insectos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Virus de los Bosques Semliki/fisiología , Animales , Línea Celular , Proteínas de Insectos/genética , Virus de los Bosques Semliki/genética , Virus de los Bosques Semliki/metabolismo , Replicación Viral
8.
J Virol ; 85(6): 2907-17, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21191029

RESUMEN

RNA interference (RNAi) is an important mosquito defense mechanism against arbovirus infection. In this paper we study the processes underlying antiviral RNAi in Aedes albopictus-derived U4.4 mosquito cells infected with Semliki Forest virus (SFV) (Togaviridae; Alphavirus). The production of virus-derived small interfering RNAs (viRNAs) from viral double-stranded RNA (dsRNA) is a key event in this host response. dsRNA could be formed by RNA replication intermediates, by secondary structures in RNA genomes or antigenomes, or by both. Which of these dsRNAs is the substrate for the generation of viRNAs is a fundamental question. Here we used deep sequencing of viRNAs and bioinformatic analysis of RNA secondary structures to gain insights into the characteristics and origins of viRNAs. An asymmetric distribution of SFV-derived viRNAs with notable areas of high-level viRNA production (hot spots) and no or a low frequency of viRNA production (cold spots) along the length of the viral genome with a slight bias toward the production of genome-derived viRNAs over antigenome-derived viRNAs was observed. Bioinformatic analysis suggests that hot spots of viRNA production are rarely but not generally associated with putative secondary structures in the SFV genome, suggesting that most viRNAs are derived from replicative dsRNA. A pattern of viRNAs almost identical to those of A. albopictus cells was observed for Aedes aegypti-derived Aag2 cells, suggesting common mechanisms that lead to viRNA production. Hot-spot viRNAs were found to be significantly less efficient at mediating antiviral RNAi than cold-spot viRNAs, pointing toward a nucleic acid-based viral decoy mechanism to evade the RNAi response.


Asunto(s)
Aedes/fisiología , Aedes/virología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Virus de los Bosques Semliki/crecimiento & desarrollo , Aedes/inmunología , Animales , Línea Celular , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/genética , ARN Viral/genética , ARN Viral/metabolismo , Virus de los Bosques Semliki/genética
9.
Front Mol Neurosci ; 15: 860410, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493328

RESUMEN

Zika virus (ZIKV) is a neurotropic flavivirus recently linked to congenital ZIKV syndrome in children and encephalitis and Guillain-Barré syndrome in adults. Neurotropic viruses often use axons to traffic to neuronal or glial cell somas where they either remain latent or replicate and proceed to infect new cells. Consequently, it has been suggested that axon degeneration could represent an evolutionarily conserved mechanism to limit viral spread. Whilst it is not known if ZIKV transits in axons, we previously reported that ZIKV infection of glial cells in a murine spinal cord-derived cell culture model of the CNS is associated with a profound loss of neuronal cell processes. This, despite that postmitotic neurons are relatively refractory to infection and death. Here, we tested the hypothesis that ZIKV-associated degeneration of neuronal processes is dependent on activation of Sterile alpha and armadillo motif-containing protein 1 (SARM1), an NADase that acts as a central executioner in a conserved axon degeneration pathway. To test this, we infected wild type and Sarm1 homozygous or heterozygous null cell cultures with ZIKV and examined NAD+ levels as well as the survival of neurons and their processes. Unexpectedly, ZIKV infection led to a rapid SARM1-independent reduction in NAD+. Nonetheless, the subsequent profound loss of neuronal cell processes was SARM1-dependent and was preceded by early changes in the appearance of ß-tubulin III staining. Together, these data identify a role for SARM1 in the pathogenesis of ZIKV infection, which may reflect SARM1's conserved prodegenerative function, independent of its NADase activity.

10.
Nat Commun ; 12(1): 2766, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986255

RESUMEN

The escalating global prevalence of arboviral diseases emphasizes the need to improve our understanding of their biology. Research in this area has been hindered by the lack of molecular tools for studying virus-mosquito interactions. Here, we develop an Aedes aegypti cell line which stably expresses Zika virus (ZIKV) capsid proteins in order to study virus-vector protein-protein interactions through quantitative label-free proteomics. We identify 157 interactors and show that eight have potentially pro-viral activity during ZIKV infection in mosquito cells. Notably, silencing of transitional endoplasmic reticulum protein TER94 prevents ZIKV capsid degradation and significantly reduces viral replication. Similar results are observed if the TER94 ortholog (VCP) functioning is blocked with inhibitors in human cells. In addition, we show that an E3 ubiquitin-protein ligase, UBR5, mediates the interaction between TER94 and ZIKV capsid. Our study demonstrates a pro-viral function for TER94/VCP during ZIKV infection that is conserved between human and mosquito cells.


Asunto(s)
Proteínas de la Cápside/metabolismo , Interacciones Huésped-Patógeno/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Proteína que Contiene Valosina/metabolismo , Virus Zika/metabolismo , Células A549 , Aedes/virología , Animales , Cápside/metabolismo , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Humanos , Mapas de Interacción de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteína que Contiene Valosina/genética , Replicación Viral/fisiología , Virus Zika/genética , Infección por el Virus Zika/patología
11.
Viruses ; 13(1)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440758

RESUMEN

Understanding how Zika virus (Flaviviridae; ZIKV) affects neural cells is paramount in comprehending pathologies associated with infection. Whilst the effects of ZIKV in neural development are well documented, impact on the adult nervous system remains obscure. Here, we investigated the effects of ZIKV infection in established mature myelinated central nervous system (CNS) cultures. Infection incurred damage to myelinated fibers, with ZIKV-positive cells appearing when myelin damage was first detected as well as axonal pathology, suggesting the latter was a consequence of oligodendroglia infection. Transcriptome analysis revealed host factors that were upregulated during ZIKV infection. One such factor, CCL5, was validated in vitro as inhibiting myelination. Transferred UV-inactivated media from infected cultures did not damage myelin and axons, suggesting that viral replication is necessary to induce the observed effects. These data show that ZIKV infection affects CNS cells even after myelination-which is critical for saltatory conduction and neuronal function-has taken place. Understanding the targets of this virus across developmental stages including the mature CNS, and the subsequent effects of infection of cell types, is necessary to understand effective time frames for therapeutic intervention.


Asunto(s)
Axones/virología , Enfermedades Desmielinizantes/etiología , Infección por el Virus Zika/complicaciones , Infección por el Virus Zika/virología , Virus Zika/fisiología , Animales , Biomarcadores , Traumatismos del Nervio Craneal/etiología , Traumatismos del Nervio Craneal/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Ratones , Ratas , Transcriptoma
12.
Insects ; 11(11)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143104

RESUMEN

The increasing global incidence of mosquito-borne infections is driving a need for effective control methods. Vector populations have expanded their geographical ranges, while increasing resistance to chemical insecticides and a lack of effective treatments or vaccines has meant that the development of vector control methods is essential in the fight against mosquito-transmitted diseases. This review will focus on Toxorhynchites, a non-hematophagous mosquito genus which is a natural predator of vector species and may be exploited as a biological control agent. Their effectiveness in this role has been strongly debated for many years and early trials have been marred by misinformation and incomplete descriptions. Here, we draw together current knowledge of the general biology of Toxorhynchites and discuss how this updated information will benefit their role in an integrated vector management program.

13.
Viruses ; 12(5)2020 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-32397571

RESUMEN

Zika virus (ZIKV; Flaviviridae) is a mosquito-borne flavivirus shown to cause fetal abnormalities collectively known as congenital Zika syndrome and Guillain-Barré syndrome in recent outbreaks. Currently, there is no specific treatment or vaccine available, and more effort is needed to identify cellular factors in the viral life cycle. Here, we investigated interactors of ZIKV envelope (E) protein by combining protein pull-down with mass spectrometry. We found that E interacts with the endoplasmic reticulum (ER) resident chaperone, glucose regulated protein 78 (GRP78). Although other flaviviruses are known to co-opt ER resident proteins, including GRP78, to enhance viral infectivity, the role ER proteins play during the ZIKV life cycle is yet to be elucidated. We showed that GRP78 levels increased during ZIKV infection and localised to sites coincident with ZIKV E staining. Depletion of GRP78 using specific siRNAs significantly reduced reporter-virus luciferase readings, viral protein synthesis, and viral titres. Additionally, GRP78 depletion reduced the ability of ZIKV to disrupt host cell translation and altered the localisation of viral replication factories, though there was no effect on viral RNA synthesis. In summary, we showed GRP78 is a vital host-factor during ZIKV infection, which may be involved in the coordination of viral replication factories.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Replicación Viral , Infección por el Virus Zika/metabolismo , Virus Zika/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/genética , Interacciones Huésped-Patógeno , Humanos , Unión Proteica , Proteínas del Envoltorio Viral/genética , Virus Zika/genética , Infección por el Virus Zika/genética , Infección por el Virus Zika/virología
14.
mSphere ; 5(2)2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32269152

RESUMEN

Arboviruses are pathogens of humans and animals. A better understanding of the interactions between these pathogens and the arthropod vectors, such as mosquitoes, that transmit them is necessary to develop novel control measures. A major antiviral pathway in the mosquito vector is the exogenous small interfering RNA (exo-siRNA) pathway, which is induced by arbovirus-derived double-stranded RNA in infected cells. Although recent work has shown the key role played by Argonaute-2 (Ago-2) and Dicer-2 (Dcr-2) in this pathway, the regulatory mechanisms that govern these pathways have not been studied in mosquitoes. Here, we show that the Domino ortholog p400 has antiviral activity against the alphavirus Semliki Forest virus (Togaviridae) both in Aedes aegypti-derived cells and in vivo Antiviral activity of p400 was also demonstrated against chikungunya virus (Togaviridae) and Bunyamwera virus (Peribunyaviridae) but not Zika virus (Flaviviridae). p400 was found to be expressed across mosquito tissues and regulated ago-2 but not dcr-2 transcript levels in A. aegypti mosquitoes. These findings provide novel insights into the regulation of an important aedine exo-siRNA pathway effector protein, Ago-2, by the Domino ortholog p400. They add functional insights to previous observations of this protein's antiviral and RNA interference regulatory activities in Drosophila melanogasterIMPORTANCE Female Aedes aegypti mosquitoes are vectors of human-infecting arthropod-borne viruses (arboviruses). In recent decades, the incidence of arthropod-borne viral infections has grown dramatically. Vector competence is influenced by many factors, including the mosquito's antiviral defenses. The exogenous small interfering RNA (siRNA) pathway is a major antiviral response restricting arboviruses in mosquitoes. While the roles of the effectors of this pathway, Argonaute-2 and Dicer-2 are well characterized, nothing is known about its regulation in mosquitoes. In this study, we demonstrate that A. aegypti p400, whose ortholog Domino in Drosophila melanogaster is a chromatin-remodeling ATPase member of the Tip60 complex, regulates siRNA pathway activity and controls ago-2 expression levels. In addition, we found p400 to have antiviral activity against different arboviruses. Therefore, our study provides new insights into the regulation of the antiviral response in A. aegypti mosquitoes.


Asunto(s)
Aedes/genética , Proteínas Argonautas/genética , Proteínas de Insectos/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Aedes/virología , Animales , Arbovirus/fisiología , Femenino , Regulación de la Expresión Génica , Mosquitos Vectores/genética , Mosquitos Vectores/virología
15.
Front Immunol ; 10: 1928, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31474994

RESUMEN

Zika virus (ZIKV) infection during pregnancy is associated with microcephaly, a congenital malformation resulting from neuroinflammation and direct effects of virus replication on the developing central nervous system (CNS). However, the exact changes in the affected CNS remain unknown. Here, we show by transcriptome analysis (at 48 h post-infection) and multiplex immune profiling that human induced-neuroprogenitor stem cells (hiNPCs) respond to ZIKV infection with a strong induction of type-I interferons (IFNs) and several type-I IFNs stimulated genes (ISGs), notably cytokines and the pro-apoptotic chemokines CXCL9 and CXCL10. By comparing the inflammatory profile induced by a ZIKV Brazilian strain with an ancestral strain isolated from Cambodia in 2010, we observed that the response magnitude differs among them. Compared to ZIKV/Cambodia, the experimental infection of hiNPCs with ZIKV/Brazil resulted in a diminished induction of ISGs and lower induction of several cytokines (IFN-α, IL-1α/ß, IL-6, IL-8, and IL-15), consequently favoring virus replication. From ZIKV-confirmed infant microcephaly cases, we detected a similar profile characterized by the presence of IFN-α, CXCL10, and CXCL9 in cerebrospinal fluid (CSF) samples collected after birth, evidencing a sustained CNS inflammation. Altogether, our data suggest that the CNS may be directly affected due to an unbalanced and chronic local inflammatory response, elicited by ZIKV infection, which contributes to damage to the fetal brain.


Asunto(s)
Sistema Nervioso Central/inmunología , Células Madre Pluripotentes Inducidas/citología , Microcefalia/inmunología , Células-Madre Neurales/citología , Virus Zika/inmunología , Brasil , Cambodia , Células Cultivadas , Sistema Nervioso Central/patología , Sistema Nervioso Central/virología , Quimiocina CXCL10/líquido cefalorraquídeo , Quimiocina CXCL10/inmunología , Quimiocina CXCL9/líquido cefalorraquídeo , Quimiocina CXCL9/inmunología , Citocinas/análisis , Femenino , Perfilación de la Expresión Génica , Humanos , Lactante , Inflamación/inmunología , Inflamación/patología , Interferón-alfa/líquido cefalorraquídeo , Interferón-alfa/inmunología , Interferón beta/inmunología , Masculino , Microcefalia/patología , Embarazo , Complicaciones Infecciosas del Embarazo/virología , Replicación Viral/inmunología , Infección por el Virus Zika/inmunología
16.
Nat Commun ; 10(1): 377, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30670689

RESUMEN

The circadian clock regulates immune responses to microbes and affects pathogen replication, but the underlying molecular mechanisms are not well understood. Here we demonstrate that the circadian components BMAL1 and REV-ERBα influence several steps in the hepatitis C virus (HCV) life cycle, including particle entry into hepatocytes and RNA genome replication. Genetic knock out of Bmal1 and over-expression or activation of REV-ERB with synthetic agonists inhibits the replication of HCV and the related flaviruses dengue and Zika via perturbation of lipid signaling pathways. This study highlights a role for the circadian clock component REV-ERBα in regulating flavivirus replication.


Asunto(s)
Factores de Transcripción ARNTL/genética , Relojes Circadianos/genética , Flavivirus/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Replicación Viral/efectos de los fármacos , Factores de Transcripción ARNTL/inmunología , Factores de Transcripción ARNTL/farmacología , Línea Celular , Relojes Circadianos/inmunología , Replicación del ADN , Dengue , Virus del Dengue/efectos de los fármacos , Virus del Dengue/genética , Flavivirus/efectos de los fármacos , Flavivirus/metabolismo , Flavivirus/patogenicidad , Regulación de la Expresión Génica/genética , Genes Esenciales/genética , Hepacivirus/efectos de los fármacos , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatitis C , Hepatocitos/inmunología , Hepatocitos/virología , Humanos , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/inmunología , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/farmacología , Proteómica , ARN Mensajero/metabolismo , Internalización del Virus/efectos de los fármacos , Virus Zika/efectos de los fármacos , Virus Zika/genética , Infección por el Virus Zika
17.
Viruses ; 10(12)2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30563205

RESUMEN

Arthropod vectors control the replication of arboviruses through their innate antiviral immune responses. In particular, the RNA interference (RNAi) pathways are of notable significance for the control of viral infections. Although much has been done to understand the role of RNAi in vector populations, little is known about its importance in non-vector mosquito species. In this study, we investigated the presence of an RNAi response in Toxorhynchites amboinensis, which is a non-blood feeding species proposed as a biological control agent against pest mosquitoes. Using a derived cell line (TRA-171), we demonstrate that these mosquitoes possess a functional RNAi response that is active against a mosquito-borne alphavirus, Semliki Forest virus. As observed in vector mosquito species, small RNAs are produced that target viral sequences. The size and characteristics of these small RNAs indicate that both the siRNA and piRNA pathways are induced in response to infection. Taken together, this data suggests that Tx. amboinensis are able to control viral infections in a similar way to natural arbovirus vector mosquito species. Understanding their ability to manage arboviral infections will be advantageous when assessing these and similar species as biological control agents.


Asunto(s)
Culicidae/genética , Culicidae/virología , Interferencia de ARN , Virus de los Bosques Semliki/genética , Infecciones por Alphavirus/inmunología , Animales , Agentes de Control Biológico , Línea Celular , Culicidae/citología , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunidad Innata , Mosquitos Vectores/genética , Mosquitos Vectores/virología , ARN Interferente Pequeño/genética , Virus de los Bosques Semliki/inmunología , Replicación Viral
18.
Nat Commun ; 9(1): 2441, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29934593

RESUMEN

Zika virus (ZIKV) emerged on a global scale and no licensed vaccine ensures long-lasting anti-ZIKV immunity. Here we report the design and comparative evaluation of four replication-deficient chimpanzee adenoviral (ChAdOx1) ZIKV vaccine candidates comprising the addition or deletion of precursor membrane (prM) and envelope, with or without its transmembrane domain (TM). A single, non-adjuvanted vaccination of ChAdOx1 ZIKV vaccines elicits suitable levels of protective responses in mice challenged with ZIKV. ChAdOx1 prME ∆TM encoding prM and envelope without TM provides 100% protection, as well as long-lasting anti-envelope immune responses and no evidence of in vitro antibody-dependent enhancement to dengue virus. Deletion of prM and addition of TM reduces protective efficacy and yields lower anti-envelope responses. Our finding that immunity against ZIKV can be enhanced by modulating antigen membrane anchoring highlights important parameters in the design of viral vectored ZIKV vaccines to support further clinical assessments.


Asunto(s)
Antígenos Virales/genética , Diseño de Fármacos , Vacunas Virales/inmunología , Infección por el Virus Zika/prevención & control , Virus Zika/inmunología , Adenoviridae/genética , Animales , Acrecentamiento Dependiente de Anticuerpo/inmunología , Antígenos Virales/inmunología , Virus del Dengue/inmunología , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/genética , Humanos , Inmunogenicidad Vacunal , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Pan troglodytes/virología , Dominios Proteicos/genética , Dominios Proteicos/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Virus Zika/genética , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
19.
Vet J ; 230: 62-64, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29102599

RESUMEN

The recent outbreak of infection with Zika virus (ZIKV; Flaviviridae) has attracted attention to this previously neglected mosquito-borne pathogen and the need for efficient therapies. Since flavivirus replication is generally known to be dependent on fatty acid biosynthesis, two inhibitors of this pathway, 5-(tetradecyloxyl)-2-furoic acid (TOFA) and cerulenin, were tested for their potentiality to inhibit virus replication. At concentrations previously shown to inhibit the replication of other flaviviruses, neither drug had a significant antiviral affect against ZIKV, but reduced the replication of the non-related mosquito-borne Semliki Forest virus (Togaviridae).


Asunto(s)
Antivirales/farmacología , Cerulenina/farmacología , Inhibidores de la Síntesis de Ácidos Grasos/farmacología , Furanos/farmacología , Hipolipemiantes/farmacología , Virus de los Bosques Semliki/efectos de los fármacos , Virus Zika/efectos de los fármacos , Células A549/virología , Relación Dosis-Respuesta a Droga , Humanos , Replicación Viral/efectos de los fármacos
20.
PLoS Negl Trop Dis ; 11(10): e0006010, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29040304

RESUMEN

RNA interference (RNAi) controls arbovirus infections in mosquitoes. Two different RNAi pathways are involved in antiviral responses: the PIWI-interacting RNA (piRNA) and exogenous short interfering RNA (exo-siRNA) pathways, which are characterized by the production of virus-derived small RNAs of 25-29 and 21 nucleotides, respectively. The exo-siRNA pathway is considered to be the key mosquito antiviral response mechanism. In Aedes aegypti-derived cells, Zika virus (ZIKV)-specific siRNAs were produced and loaded into the exo-siRNA pathway effector protein Argonaute 2 (Ago2); although the knockdown of Ago2 did not enhance virus replication. Enhanced ZIKV replication was observed in a Dcr2-knockout cell line suggesting that the exo-siRNA pathway is implicated in the antiviral response. Although ZIKV-specific piRNA-sized small RNAs were detected, these lacked the characteristic piRNA ping-pong signature motif and were bound to Ago3 but not Piwi5 or Piwi6. Silencing of PIWI proteins indicated that the knockdown of Ago3, Piwi5 or Piwi6 did not enhance ZIKV replication and only Piwi4 displayed antiviral activity. We also report that the expression of ZIKV capsid (C) protein amplified the replication of a reporter alphavirus; although, unlike yellow fever virus C protein, it does not inhibit the exo-siRNA pathway. Our findings elucidate ZIKV-mosquito RNAi interactions that are important for understanding its spread.


Asunto(s)
Aedes/virología , Interacciones Huésped-Patógeno , Proteínas de Insectos/genética , Interferencia de ARN , ARN Interferente Pequeño , Virus Zika/fisiología , Aedes/citología , Alphavirus/genética , Animales , Proteínas de la Cápside/genética , Línea Celular , Proteínas de Insectos/metabolismo , Replicación Viral , Virus de la Fiebre Amarilla/genética , Virus Zika/genética , Infección por el Virus Zika/transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA