Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(11): 6171-6182, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38597676

RESUMEN

Chromatin modifiers are emerging as major determinants of many types of cancers, including Anaplastic Large Cell Lymphomas (ALCL), a family of highly heterogeneous T-cell lymphomas for which therapeutic options are still limited. HELLS is a multifunctional chromatin remodeling protein that affects genomic instability by participating in the DNA damage response. Although the transcriptional function of HELLS has been suggested, no clues on how HELLS controls transcription are currently available. In this study, by integrating different multi-omics and functional approaches, we characterized the transcriptional landscape of HELLS in ALCL. We explored the clinical impact of its transcriptional program in a large cohort of 44 patients with ALCL. We demonstrated that HELLS, loaded at the level of intronic regions of target promoters, facilitates RNA Polymerase II (RNAPII) progression along the gene bodies by reducing the persistence of co-transcriptional R-loops and promoting DNA damage resolution. Importantly, selective knockdown of HELLS sensitizes ALCL cells to different chemotherapeutic agents, showing a synergistic effect. Collectively, our work unveils the role of HELLS in acting as a gatekeeper of ALCL genome stability providing a rationale for drug design.


Asunto(s)
Daño del ADN , Estructuras R-Loop , ARN Polimerasa II , Transcripción Genética , Humanos , ARN Polimerasa II/metabolismo , Línea Celular Tumoral , Inestabilidad Genómica/genética , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patología , Linfoma Anaplásico de Células Grandes/metabolismo , Regulación Neoplásica de la Expresión Génica , ADN Helicasas/genética , ADN Helicasas/metabolismo , Regiones Promotoras Genéticas , Linfoma de Células T/genética , Linfoma de Células T/metabolismo , Linfoma de Células T/patología
2.
Histopathology ; 85(1): 62-74, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38477417

RESUMEN

AIMS: Tumour necrosis and/or increased mitoses define high-grade papillary thyroid carcinoma (PTC). It is unclear whether angioinvasion is prognostic for PTC. Cut-offs at five or more mitoses/2 mm2 and four or more angioinvasive foci have been empirically defined based upon data from all forms of aggressive non-anaplastic thyroid carcinomas. Performance of tumour necrosis, mitoses and vascular invasion in predicting distant metastases when specifically applied to PTC is undefined. METHODS: We analysed 50 consecutive PTC cases with distant metastases (DM-PTC): 16 synchronous and 34 metachronous. A total of 108 non-metastatic PTC (N-DM-PTC, 15.0-year median follow-up) were used as controls. Invasive encapsulated follicular variant PTC was excluded. Necrosis, mitoses and angioinvasion were quantified. Receiver operating characteristics (ROC) and area under the curve (AUC) analyses determined best sensitivity and specificity cut-offs predictive of distant metastases. RESULTS: Metastases correlated with necrosis (any extent = 43.8% all DM-PTC, 53.1% metachronous DM-PTC versus 5% N-DM-PTC; P < 0.001), mitoses (P < 0.001) and angioinvasion (P < 0.001). Mitoses at five or more per 2 mm2 was the best cut-off correlating with distant metastases: sensitivity/specificity 42.9%/97.2% all DM-PTC (AUC = 0.78), 18.8%/97.2% synchronous DM-PTC (AUC = 0.63), 54.6%/97.2% metachronous DM-PTC (AUC = 0.85). Angioinvasive foci at five or more was the best cut-off correlating with distant metastases: sensitivity/specificity 36.2%/91.7% all DM-PTC (AUC = 0.75), 25%/91.7% synchronous DM-PTC (AUC = 0.79) and 41.9%/91.7% metachronous DM-PTC (AUC = 0.73). Positive/negative predictive values (PPV/NPV) were: necrosis 22.6%/98.2%; five or more mitoses 32.3%/98.2%; five or more angioinvasive foci 11.8%/97.9%. After multivariable analysis, only necrosis and mitotic activity remained associated with DM-PTC. CONCLUSION: Our data strongly support PTC grading, statistically validating World Health Organisation (WHO) criteria to identify poor prognosis PTC. Angioinvasion is not an independent predictor of DM-PTC.


Asunto(s)
Necrosis , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Masculino , Neoplasias de la Tiroides/patología , Femenino , Persona de Mediana Edad , Cáncer Papilar Tiroideo/patología , Adulto , Pronóstico , Estudios de Casos y Controles , Anciano , Organización Mundial de la Salud , Invasividad Neoplásica , Carcinoma Papilar/patología , Mitosis , Adulto Joven
3.
Haematologica ; 108(12): 3333-3346, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37381763

RESUMEN

Long non-coding RNA (lncRNA) are emerging as powerful and versatile regulators of transcriptional programs and distinctive biomarkers of progression of T-cell lymphoma. Their role in the aggressive anaplastic lymphoma kinase-negative (ALK-) subtype of anaplastic large cell lymphoma (ALCL) has been elucidated only in part. Starting from our previously identified ALCL-associated lncRNA signature and performing digital gene expression profiling of a retrospective cohort of ALCL, we defined an 11 lncRNA signature able to discriminate among ALCL subtypes. We selected a not previously characterized lncRNA, MTAAT, with preferential expression in ALK- ALCL, for molecular and functional studies. We demonstrated that lncRNA MTAAT contributes to an aberrant mitochondrial turnover restraining mitophagy and promoting cellular proliferation. Functionally, lncRNA MTAAT acts as a repressor of a set of genes related to mitochondrial quality control via chromatin reorganization. Collectively, our work demonstrates the transcriptional role of lncRNA MTAAT in orchestrating a complex transcriptional program sustaining the progression of ALK- ALCL.


Asunto(s)
Linfoma Anaplásico de Células Grandes , Linfoma de Células T Periférico , ARN Largo no Codificante , Humanos , Proteínas Tirosina Quinasas Receptoras/genética , Quinasa de Linfoma Anaplásico/genética , ARN Largo no Codificante/genética , Mitofagia/genética , Estudios Retrospectivos , Linfoma Anaplásico de Células Grandes/patología
4.
Hematol Oncol ; 40(4): 645-657, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35606338

RESUMEN

We evaluated the prognostic role of the largest distance between two lesions (Dmax), defined by positron emission tomography (PET) in a retrospective cohort of newly diagnosed classical Hodgkin Lymphoma (cHL) patients. We also explored the molecular bases underlying Dmax through a gene expression analysis of diagnostic biopsies. We included patients diagnosed with cHL from 2007 to 2020, initially treated with ABVD, with available baseline PET for review, and with at least two FDG avid lesions. Patients with available RNA from diagnostic biopsy were eligible for gene expression analysis. Dmax was deduced from the three-dimensional coordinates of the baseline metabolic tumor volume (MTV) and its effect on progression free survival (PFS) was evaluated. Gene expression profiles were correlated with Dmax and analyzed using CIBERSORTx algorithm to perform deconvolution. The study was conducted on 155 eligible cHL patients. Using its median value of 20 cm, Dmax was the only variable independently associated with PFS (HR = 2.70, 95% CI 1.1-6.63, pValue = 0.03) in multivariate analysis of PFS for all patients and for those with early complete metabolic response (iPET-). Among patients with iPET-low Dmax was associated with a 4-year PFS of 90% (95% CI 82.0-98.9) significantly better compared to high Dmax (4-year PFS 72.4%, 95% CI 61.9-84.6). From the analysis of gene expression profiles differences in Dmax were mostly associated with variations in the expression of microenvironmental components. In conclusion our results support tumor dissemination measured through Dmax as novel prognostic factor for cHL patients treated with ABVD.


Asunto(s)
Enfermedad de Hodgkin , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Bleomicina/uso terapéutico , Dacarbazina/uso terapéutico , Doxorrubicina/uso terapéutico , Fluorodesoxiglucosa F18/uso terapéutico , Genómica , Enfermedad de Hodgkin/diagnóstico por imagen , Enfermedad de Hodgkin/tratamiento farmacológico , Enfermedad de Hodgkin/genética , Humanos , Tomografía de Emisión de Positrones/métodos , Pronóstico , ARN/uso terapéutico , Estudios Retrospectivos , Vinblastina/uso terapéutico
5.
Hematol Oncol ; 39(2): 205-214, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33215701

RESUMEN

The primary function of 25(OH)Vitamin D (VitD) is to control calcium; however, recent evidence associated serum VitD deficiency to high aggressiveness and worse outcome in different type of malignancies including lymphomas, and the reasons of such effect are to be defined. In this study, we investigated the association of VitD blood levels with gene expression in a retrospective cohort of 181 lymphomas (104 diffuse large B-cell lymphomas [DLBCLs] and 77 classical Hodgkin's lymphomas [cHLs]) of whom 116 with available gene expression profiles (52 DLBCLs and 64 cHLs, respectively). In DLBCL, VitD deficiency did not cause significant alteration in gene expression suggesting different mechanisms of action including a possible systemic effect or an effect on pharmacokinetics. By contrast, in cHLs, VitD deficiency induced profound changes in the transcriptional program leading to the NF-κB-mediated activation of stress-protective and pro-survival pathways. Coherently, VitD signaling defined by vitamin D Receptor (VDR) expression analysis, resulted highly activated in cHLs but not in DLBCLs. Even if preliminary, these data represent the first evidence of a direct role of VitD in the biology of cHL and suggest a multimodality and disease-specific activity of this vitamin in lymphomas.


Asunto(s)
Enfermedad de Hodgkin/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Vitamina D/uso terapéutico , Adulto , Humanos , Transcriptoma , Vitamina D/sangre , Vitamina D/farmacología
6.
Int J Mol Sci ; 20(12)2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31200515

RESUMEN

Telomere and telomerase regulation contributes to the onset and evolution of several tumors, including highly aggressive thyroid cancers (TCs). TCs are the most common endocrine malignancies and are generally characterized by a high rate of curability. However, a small but significant percentage develops distant metastasis or progresses into undifferentiated forms associated with bad prognosis and for which poor therapeutic options are available. Mutations in telomerase reverse transcriptase (TERT) promoter are among the most credited prognostic marker of aggressiveness in TCs. Indeed, their frequency progressively increases passing from indolent lesions to aggressive and anaplastic forms. TERT promoter mutations create binding sites for transcription factors, increasing TERT expression and telomerase activity. Furthermore, aggressiveness of TCs is associated with TERT locus amplification. These data encourage investigating telomerase regulating pathways as relevant drivers of TC development and progression to foster the identification of new therapeutics targets. Here, we summarize the current knowledge about telomere regulation and TCs, exploring both canonical and less conventional pathways. We discuss the possible role of telomere homeostasis in mediating response to cancer therapies and the possibility of using epigenetic drugs to re-evaluate the use of telomerase inhibitors. Combined treatments could be of support to currently used therapies still presenting weaknesses.


Asunto(s)
Biomarcadores de Tumor/genética , Telomerasa/genética , Homeostasis del Telómero , Neoplasias de la Tiroides/genética , Animales , Humanos , Mutación , Telomerasa/metabolismo , Neoplasias de la Tiroides/patología
7.
Mol Cancer ; 17(1): 164, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30466442

RESUMEN

BRD4, member of the Bromodomain and Extraterminal (BET) protein family, is largely acknowledged in cancer for its role in super-enhancers (SEs) organization and oncogenes expression regulation. Inhibition of BRD4 shortcuts the communication between SEs and target promoters with a subsequent cell-specific repression of oncogenes to which cancer cells are addicted and cell death. To date, this is the most credited mechanism of action of BET inhibitors, a class of small molecules targeting BET proteins which are currently in clinical trials in several cancer settings.However, recent evidence indicates that BRD4 relevance in cancer goes beyond its role in transcription regulation and identifies this protein as a keeper of genome stability.Indeed, a non-transcriptional role of BRD4 in controlling DNA damage checkpoint activation and repair as well as telomere maintenance has been proposed, throwing new lights into the multiple functions of this protein and opening new perspectives on the use of BETi in cancer. Here we discuss the current available information on non-canonical, non-transcriptional functions of BRD4 and on their implications in cancer biology. Integrating this information with the already known BRD4 role in gene expression regulation, we propose a "common" model to explain BRD4 genomic function. Furthermore, in light of the transversal function of BRD4, we provide new interpretation for the cytotoxic activity of BETi and we discuss new possibilities for a wide and focused employment of these drugs in clinical settings.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Proteínas de Ciclo Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Daño del ADN , Humanos , Neoplasias/patología , Proteínas Nucleares/genética , Telómero/genética , Telómero/metabolismo , Elongación de la Transcripción Genética , Factores de Transcripción/genética , Iniciación de la Transcripción Genética
8.
Hepatology ; 63(3): 787-98, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26605757

RESUMEN

UNLABELLED: The patatin-like phosholipase domain-containing 3 (PNPLA3) rs738409 polymorphism (I148M) is a major determinant of hepatic fat and predisposes to the full spectrum of liver damage in nonalcoholic fatty liver disease (NAFLD). The aim of this study was to evaluate whether additional PNPLA3 coding variants contribute to NAFLD susceptibility, first in individuals with contrasting phenotypes (with early-onset NAFLD vs. very low aminotransferases) and then in a large validation cohort. Rare PNPLA3 variants were not detected by sequencing coding regions and intron-exon boundaries either in 142 patients with early-onset NAFLD nor in 100 healthy individuals with alanine aminotransferase <22/20 IU/mL. Besides rs738409 I148M, the rs2294918 G>A polymorphism (E434K sequence variant) was over-represented in NAFLD (adjusted P = 0.01). In 1,447 subjects with and without NAFLD, the 148M-434E (P < 0.0001), but not the 148M-434K, haplotype (P > 0.9), was associated with histological NAFLD and steatohepatitis. Both the I148M (P = 0.0002) and E434K variants (P = 0.044) were associated with serum ALT levels, by interacting with each other, in that the 434K hampered the association with liver damage of the 148M allele (P = 0.006). The E434K variant did not affect PNPLA3 enzymatic activity, but carriers of the rs2294918 A allele (434K) displayed lower hepatic PNPLA3 messenger RNA and protein levels (P < 0.05). CONCLUSIONS: Rare loss-of-function PNPLA3 variants were not detected in early-onset NAFLD. However, PNPLA3 rs2294918 E434K decreased PNPLA3 expression, lessening the effect of the I148M variant on the predisposition to steatosis and liver damage. This suggests that the PNPLA3 I148M variant has a codominant negative effect on triglycerides mobilization from lipid droplets, mediated by inhibition of other lipases.


Asunto(s)
Lipasa/genética , Proteínas de la Membrana/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Adolescente , Adulto , Alanina Transaminasa/sangre , Estudios de Casos y Controles , Niño , Femenino , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Metabolismo de los Lípidos/genética , Hígado/patología , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/patología , Polimorfismo de Nucleótido Simple
9.
Int J Mol Sci ; 17(3): 383, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26999107

RESUMEN

Telomeres consist of repeat DNA sequences located at the terminal portion of chromosomes that shorten during mitosis, protecting the tips of chromosomes. During chronic degenerative conditions associated with high cell replication rate, progressive telomere attrition is accentuated, favoring senescence and genomic instability. Several lines of evidence suggest that this process is involved in liver disease progression: (a) telomere shortening and alterations in the expression of proteins protecting the telomere are associated with cirrhosis and hepatocellular carcinoma; (b) advanced liver damage is a feature of a spectrum of genetic diseases impairing telomere function, and inactivating germline mutations in the telomerase complex (including human Telomerase Reverse Transcriptase (hTERT) and human Telomerase RNA Component (hTERC)) are enriched in cirrhotic patients independently of the etiology; and (c) experimental models suggest that telomerase protects from liver fibrosis progression. Conversely, reactivation of telomerase occurs during hepatocarcinogenesis, allowing the immortalization of the neoplastic clone. The role of telomere attrition may be particularly relevant in the progression of nonalcoholic fatty liver, an emerging cause of advanced liver disease. Modulation of telomerase or shelterins may be exploited to prevent liver disease progression, and to define specific treatments for different stages of liver disease.


Asunto(s)
Hepatopatías/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Telómero/genética , Progresión de la Enfermedad , Humanos , Hepatopatías/genética , Hepatopatías/metabolismo , Mutación , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , ARN/metabolismo , Complejo Shelterina , Telomerasa/metabolismo , Telómero/metabolismo , Acortamiento del Telómero , Proteínas de Unión a Telómeros/metabolismo
10.
Hepatology ; 59(6): 2170-7, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24114809

RESUMEN

UNLABELLED: The incidence of hepatocellular carcinoma (HCC) is increasing in Western countries. Although several clinical factors have been identified, many individuals never develop HCC, suggesting a genetic susceptibility. However, to date, only a few single-nucleotide polymorphisms have been reproducibly shown to be linked to HCC onset. A variant (rs738409 C>G, encoding for p.I148M) in the PNPLA3 gene is associated with liver damage in chronic liver diseases. Interestingly, several studies have reported that the minor rs738409[G] allele is more represented in HCC cases in chronic hepatitis C (CHC) and alcoholic liver disease (ALD). However, a significant association with HCC related to CHC has not been consistently observed, and the strength of the association between rs738409 and HCC remains unclear. We performed a meta-analysis of individual participant data including 2,503 European patients with cirrhosis to assess the association between rs738409 and HCC, particularly in ALD and CHC. We found that rs738409 was strongly associated with overall HCC (odds ratio [OR] per G allele, additive model=1.77; 95% confidence interval [CI]: 1.42-2.19; P=2.78 × 10(-7) ). This association was more pronounced in ALD (OR=2.20; 95% CI: 1.80-2.67; P=4.71 × 10(-15) ) than in CHC patients (OR=1.55; 95% CI: 1.03-2.34; P=3.52 × 10(-2) ). After adjustment for age, sex, and body mass index, the variant remained strongly associated with HCC. CONCLUSION: Overall, these results suggest that rs738409 exerts a marked influence on hepatocarcinogenesis in patients with cirrhosis of European descent and provide a strong argument for performing further mechanistic studies to better understand the role of PNPLA3 in HCC development.


Asunto(s)
Carcinoma Hepatocelular/genética , Lipasa/genética , Neoplasias Hepáticas/genética , Proteínas de la Membrana/genética , Hepatitis C Crónica/complicaciones , Humanos , Cirrosis Hepática Alcohólica/complicaciones , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Población Blanca
11.
Hepatology ; 58(4): 1245-52, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23564580

RESUMEN

UNLABELLED: Steatosis is a common histopathological feature of chronic hepatitis B (CHB) and has been associated with severity of liver disease. Recently, the rs738409 I148M patatin-like phospholipase domain-containing 3 (PNPLA3) polymorphism has been demonstrated to influence steatosis susceptibility and fibrosis progression in patients with different liver diseases, but no data are yet available for CHB. The aim of this study was to evaluate whether PNPLA3 I148M influences steatosis susceptibility in a large series of patients with CHB. We enrolled 235 treatment-naïve CHB patients consecutively examined by percutaneous liver biopsy. In ≥2-cm-long liver tissue cores, steatosis and fibrosis were staged by Kleiner and METAVIR scores, respectively. The I148M polymorphism was determined by Taqman assays. Steatosis was present in 146 (62%) patients, of whom 24 (10%) had severe (>33% of hepatocytes) steatosis. Steatosis was independently associated with age (odds ratio [OR]: 2.67; confidence interval [CI]: 1.50-4.92; for age ≥50 years), body mass index (BMI; OR, 2.84; CI, 1.30-6.76; for BMI ≥27.5 kg/m(2) ), diabetes or impaired fasting glucose (OR, 4.45; CI, 1.10-30.0), and PNPLA3 148M allele (OR, 1.62; CI, 1.00-7.00; for each 148M allele). Independent predictors of severe steatosis were BMI (OR, 3.60; CI, 1.39-9.22; for BMI ≥27.5 kg/m(2) ) and PNPLA3 148M allele (OR, 6.03; CI, 1.23-5.0; for each 148M allele). PNPLA3 148M alleles were associated with a progressive increase in severe steatosis in patients with acquired cofactors, such severe overweight and a history of alcohol intake (P = 0.005). CONCLUSION: In CHB patients, the PNPLA3 I148M polymorphism influences susceptibility to steatosis and, in particular, when associated with severe overweight and alcohol intake, severe steatosis.


Asunto(s)
Hígado Graso/epidemiología , Hígado Graso/genética , Predisposición Genética a la Enfermedad/genética , Hepatitis B Crónica/complicaciones , Lipasa/genética , Proteínas de la Membrana/genética , Polimorfismo de Nucleótido Simple/genética , Adulto , Alcoholismo/complicaciones , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Italia , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Prevalencia , Estudios Retrospectivos , Factores de Riesgo , Índice de Severidad de la Enfermedad
12.
J Pediatr Gastroenterol Nutr ; 58(5): 632-6, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24345846

RESUMEN

OBJECTIVE: Nonalcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver disease in industrialized countries in adults and children, following the trail of the epidemic diffusion of obesity. Nonalcoholic steatohepatitis (NASH) is a potentially serious form of NAFLD linked with a significant increase in overall and liver-related morbidity and mortality. Because diagnosis still requires liver biopsy, there is urgent need of developing noninvasive early markers. The aim of the present study was to assess whether the simultaneous detection of genetic risk factors could predict NASH. METHOD: We enrolled 152 untreated, consecutive obese children and adolescents with biopsy-proven NAFLD and increased liver enzymes. The PNPLA3 rs738409 C>G (I148 M), SOD2 rs4880 C>T, KLF6 rs3750861 G>A, and LPIN1 rs13412852 C>T polymorphisms were detected by Taqman assays. RESULTS: A multivariate logistic model based on the genetic risk factors significantly predicted NASH (area under the receiver-operating characteristic curve [AUC] 0.75, 95% confidence interval [CI] 0.67-0.82, P < 0.0001), performing better than a clinical risk score identified at stepwise regression based on age, aspartate aminotransferase levels, and diastolic blood pressure (AUC 0.66, 95% CI 0.57-0.75). A single cutoff value of the genetic risk score had 90% sensitivity and 36% specificity for NASH. A risk score combining the clinical and genetic risk factors resulted in an AUC of 0.80 (95% CI 0.73-0.87). CONCLUSIONS: A score based on genetic risk factors significantly predicts NASH in obese children with increased liver enzymes, representing a proof-of-principle that genetic scores may be useful to predict long-term outcomes of the disease and guide clinical management.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/genética , Polimorfismo Genético/genética , Adolescente , Biopsia , Niño , Femenino , Humanos , Factor 6 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Lipasa/genética , Hígado/enzimología , Hígado/patología , Modelos Logísticos , Masculino , Proteínas de la Membrana/genética , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/complicaciones , Fosfatidato Fosfatasa/genética , Proteínas Proto-Oncogénicas/genética , Curva ROC , Superóxido Dismutasa/genética
13.
Cancer Lett ; 592: 216950, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38729555

RESUMEN

Malignant pleural mesothelioma is a rare and lethal cancer caused by exposure to asbestos. The highly inflammatory environment caused by fibers accumulation forces cells to undergo profound adaptation to gain survival advantages. Prioritizing the synthesis of essential transcripts is an efficient mechanism coordinated by multiple molecules, including long non-coding RNAs. Enhancing the knowledge about these mechanisms is an essential weapon in combating mesothelioma. Linc00941 correlates to bad prognosis in various cancers, but it is reported to partake in distinct and apparently irreconcilable processes. In this work, we report that linc00941 supports the survival and aggressiveness of mesothelioma cells by influencing protein synthesis and ribosome biogenesis. Linc00941 binds to the translation initiation factor eIF4G, promoting the selective protein synthesis of cMYC, which, in turn, enhances the expression of key genes involved in translation. We analyzed a retrospective cohort of 97 mesothelioma patients' samples from our institution, revealing that linc00941 expression strongly correlates with reduced survival probability. This discovery clarifies linc00941's role in mesothelioma and proposes a unified mechanism of action for this lncRNA involving the selective translation of essential oncogenes, reconciling the discrepancies about its function.


Asunto(s)
Factor 4G Eucariótico de Iniciación , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-myc , ARN Largo no Codificante , Humanos , Mesotelioma Maligno/genética , Mesotelioma Maligno/patología , Mesotelioma Maligno/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Mesotelioma/genética , Mesotelioma/patología , Mesotelioma/metabolismo , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pleurales/genética , Neoplasias Pleurales/patología , Neoplasias Pleurales/metabolismo , Ribosomas/metabolismo , Ribosomas/genética , Estudios Retrospectivos , Pronóstico , Proliferación Celular
14.
Cancers (Basel) ; 16(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38927938

RESUMEN

BACKGROUND: A subset of patients affected by cutaneous squamous cell carcinoma (cSCC) can exhibit locally invasive or metastatic tumors. Different staging classification systems are currently in use for cSCC. However, precise patient risk stratification has yet to be reached in clinical practice. The study aims to identify specific histological and molecular parameters characterizing metastatic cSCC. METHODS: Patients affected by metastatic and non-metastatic cSCC (controls) were included in the present study and matched for clinical and histological characteristics. Skin samples from primary tumors were revised for several histological parameters and also underwent gene expression profiling with a commercially available panel testing 770 different genes. RESULTS: In total, 48 subjects were enrolled in the study (24 cases, 24 controls); 67 genes were found to be differentially expressed between metastatic and non-metastatic cSCC. Most such genes were involved in immune regulation, skin integrity, angiogenesis, cell migration and proliferation. CONCLUSION: The combination of histological and molecular profiles of cSCCs allows the identification of features specific to metastatic cSCC, with potential implications for more precise patient risk stratification.

15.
Cancer Immunol Res ; 12(1): 120-134, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-37856875

RESUMEN

Neoadjuvant chemotherapy (NAC) alone or combined with target therapies represents the standard of care for localized triple-negative breast cancer (TNBC). However, only a fraction of patients have a response, necessitating better understanding of the complex elements in the TNBC ecosystem that establish continuous and multidimensional interactions. Resolving such complexity requires new spatially-defined approaches. Here, we used spatial transcriptomics to investigate the multidimensional organization of TNBC at diagnosis and explore the contribution of each cell component to response to NAC. Starting from a consecutive retrospective series of TNBC cases, we designed a case-control study including 24 patients with TNBC of which 12 experienced a pathologic complete response (pCR) and 12 no-response or progression (pNR) after NAC. Over 200 regions of interest (ROI) were profiled. Our computational approaches described a model that recapitulates clinical response to therapy. The data were validated in an independent cohort of patients. Differences in the transcriptional program were detected in the tumor, stroma, and immune infiltrate comparing patients with a pCR with those with pNR. In pCR, spatial contamination between the tumor mass and the infiltrating lymphocytes was observed, sustained by a massive activation of IFN-signaling. Conversely, pNR lesions displayed increased pro-angiogenetic signaling and oxygen-based metabolism. Only modest differences were observed in the stroma, revealing a topology-based functional heterogeneity of the immune infiltrate. Thus, spatial transcriptomics provides fundamental information on the multidimensionality of TNBC and allows an effective prediction of tumor behavior. These results open new perspectives for the improvement and personalization of therapeutic approaches to TNBCs.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Estudios de Casos y Controles , Terapia Neoadyuvante/métodos , Pronóstico , Estudios Retrospectivos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Femenino
16.
Cancer Cell ; 42(4): 662-681.e10, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38518775

RESUMEN

Intratumor morphological heterogeneity of pancreatic ductal adenocarcinoma (PDAC) predicts clinical outcomes but is only partially understood at the molecular level. To elucidate the gene expression programs underpinning intratumor morphological variation in PDAC, we investigated and deconvoluted at single cell level the molecular profiles of histologically distinct clusters of PDAC cells. We identified three major morphological and functional variants that co-exist in varying proportions in all PDACs, display limited genetic diversity, and are associated with a distinct organization of the extracellular matrix: a glandular variant with classical ductal features; a transitional variant displaying abortive ductal structures and mixed endodermal and myofibroblast-like gene expression; and a poorly differentiated variant lacking ductal features and basement membrane, and showing neuronal lineage priming. Ex vivo and in vitro evidence supports the occurrence of dynamic transitions among these variants in part influenced by extracellular matrix composition and stiffness and associated with local, specifically neural, invasion.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Membrana Basal/metabolismo , Sistema Nervioso
17.
Mol Oncol ; 17(12): 2728-2742, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37408506

RESUMEN

Mortality from vmelanoma is associated with metastatic disease, but the mechanisms leading to spreading of the cancer cells remain obscure. Spatial profiling revealed that melanoma is characterized by a high degree of heterogeneity, which is established by the ability of melanoma cells to switch between different phenotypical stages. This plasticity, likely a heritage from embryonic pathways, accounts for a relevant part of the metastatic potential of these lesions, and requires the rapid and efficient reorganization of the transcriptional landscape of melanoma cells. A large part of the non-coding genome cooperates to control gene expression, specifically through the activity of enhancers (ENHs). In this study, we aimed to identify ex vivo the network of active ENHs and to outline their cooperative interactions in supporting transcriptional adaptation during melanoma metastatic progression. We conducted a genome-wide analysis to map active ENHs distribution in a retrospective cohort of 39 melanoma patients, comparing the profiles obtained in primary (N = 19) and metastatic (N = 20) melanoma lesions. Unsupervised clustering showed that the profile for acetylated histone H3 at lysine 27 (H3K27ac) efficiently segregates lesions into three different clusters corresponding to progressive stages of the disease. We reconstructed the map of super-ENHs (SEs) and cooperative ENHs that associate with metastatic progression in melanoma, which showed that cooperation among regulatory elements is a mandatory requirement for transcriptional plasticity. We also showed that these elements carry out specialized and non-redundant functions, and indicated the existence of a hierarchical organization, with SEs on top as masterminds of the entire transcriptional program and classical ENHs as executors. By providing an innovative vision of how the chromatin landscape of melanoma works during metastatic spreading, our data also point out the need to integrate functional profiling in the analysis of cancer lesions to increase definition and improve interpretation of tumor heterogeneity.


Asunto(s)
Melanoma , Humanos , Melanoma/genética , Melanoma/metabolismo , Estudios Retrospectivos , Histonas/metabolismo , Cromatina
18.
Cell Death Dis ; 14(2): 99, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765037

RESUMEN

Anaplastic Thyroid Cancer (ATC) is the most aggressive and de-differentiated subtype of thyroid cancer. Many studies hypothesized that ATC derives from Differentiated Thyroid Carcinoma (DTC) through a de-differentiation process triggered by specific molecular events still largely unknown. E2F7 is an atypical member of the E2F family. Known as cell cycle inhibitor and keeper of genomic stability, in specific contexts its function is oncogenic, guiding cancer progression. We performed a meta-analysis on 279 gene expression profiles, from 8 Gene Expression Omnibus patient samples datasets, to explore the causal relationship between DTC and ATC. We defined 3 specific gene signatures describing the evolution from normal thyroid tissue to DTC and ATC and validated them in a cohort of human surgically resected ATCs collected in our Institution. We identified E2F7 as a key player in the DTC-ATC transition and showed in vitro that its down-regulation reduced ATC cells' aggressiveness features. RNA-seq and ChIP-seq profiling allowed the identification of the E2F7 specific gene program, which is mainly related to cell cycle progression and DNA repair ability. Overall, this study identified a signature describing DTC de-differentiation toward ATC subtype and unveiled an E2F7-dependent transcriptional program supporting this process.


Asunto(s)
Adenocarcinoma , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Carcinoma Anaplásico de Tiroides/genética , Carcinoma Anaplásico de Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Adenocarcinoma/genética , Diferenciación Celular/genética , Oncogenes/genética , Factor de Transcripción E2F7/genética
19.
PLoS One ; 18(1): e0280364, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36649303

RESUMEN

The immune system plays a central role in the onset and progression of cancer. A better understanding of transcriptional changes in immune cell-related genes associated with cancer progression, and their significance in disease prognosis, is therefore needed. NanoString-based targeted gene expression profiling has advantages for deployment in a clinical setting over RNA-seq technologies. We analysed NanoString PanCancer Immune Profiling panel gene expression data encompassing 770 genes, and overall survival data, from multiple previous studies covering 10 different cancer types, including solid and blood malignancies, across 515 patients. This analysis revealed an immune gene signature comprising 39 genes that were upregulated in those patients with shorter overall survival; of these 39 genes, three (MAGEC2, SSX1 and ULBP2) were common to both solid and blood malignancies. Most of the genes identified have previously been reported as relevant in one or more cancer types. Using Cibersort, we investigated immune cell levels within individual cancer types and across groups of cancers, as well as in shorter and longer overall survival groups. Patients with shorter survival had a higher proportion of M2 macrophages and γδ T cells. Patients with longer overall survival had a higher proportion of CD8+ T cells, CD4+ T memory cells, NK cells and, unexpectedly, T regulatory cells. Using a transcriptomics platform with certain advantages for deployment in a clinical setting, our multi-cancer meta-analysis of immune gene expression and overall survival data has identified a specific transcriptional profile associated with poor overall survival.


Asunto(s)
Neoplasias , Transcriptoma , Humanos , Neoplasias/genética , Perfilación de la Expresión Génica , Pronóstico , Linfocitos T CD4-Positivos
20.
NAR Cancer ; 4(3): zcac024, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35910692

RESUMEN

Malignant pleural mesothelioma (MPM) is a rare and incurable cancer, which incidence is increasing in many countries. MPM escapes the classical genetic model of cancer evolution, lacking a distinctive genetic fingerprint. Omics profiling revealed extensive heterogeneity failing to identify major vulnerabilities and restraining development of MPM-oriented therapies. Here, we performed a multilayered analysis based on a functional genome-wide CRISPR/Cas9 screening integrated with patients molecular and clinical data, to identify new non-genetic vulnerabilities of MPM. We identified a core of 18 functionally-related genes as essential for MPM cells. The chromatin reader KAP1 emerged as a dependency of MPM. We showed that KAP1 supports cell growth by orchestrating the expression of a G2/M-specific program, ensuring mitosis correct execution. Targeting KAP1 transcriptional function, by using CDK9 inhibitors resulted in a dramatic loss of MPM cells viability and shutdown of the KAP1-mediated program. Validation analysis on two independent MPM-patients sets, including a consecutive, retrospective cohort of 97 MPM, confirmed KAP1 as new non-genetic dependency of MPM and proved the association of its dependent gene program with reduced patients' survival probability. Overall these data: provided new insights into the biology of MPM delineating KAP1 and its target genes as building blocks of its clinical aggressiveness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA