Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Sports Med ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38698624

RESUMEN

Hydrogen, as an antioxidant, may have the potential to mitigate fatigue and improve selected oxidative stress markers induced by strenuous exercise. This study focused on a previously unexplored approach involving pre-exercise inhalation of hydrogen-rich gas (HRG). Twenty-four healthy adult men first completed pre-laboratories to determine maximum cycling power (Wmax) and maximum cycling time (Tmax). Then they were subjected to ride Tmax at 80% Wmax and 60-70 rpm on cycle ergometers after inhaled HRG or placebo gas (air) for 60-minute in a double-blind, counterbalanced, randomized, and crossover design. The cycling frequency in the fatigue modeling process and the rating of perceived exertion (RPE) at the beginning and end of the ride were recorded. Before gas inhalation and after fatigue modeling, visual analog scale (VAS) for fatigue and counter-movement jump (CMJ) were tested, and blood samples were obtained. The results showed that compared to a placebo, HRG inhalation induced significant improvement in VAS, RPE, the cycling frequency during the last 30 seconds in the fatigue modeling process, the ability to inhibit hydroxyl radicals, and serum lactate after exercise (p<0.028), but not in CMJ height and glutathione peroxidase activity. The cycling frequency during the last 30 seconds of all other segments in the fatigue modeling process was within the range of 60-70 rpm. In conclusion, HRG inhalation prior to acute exercise can alleviate exercise-induced fatigue, maintain functional performance, and improve hydroxyl radical and lactate levels.

2.
Front Physiol ; 15: 1449149, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39345786

RESUMEN

Background: Adolescent tennis players encounter critical physical demands, but the lack of comprehensive analysis of training types hampers the selection of optimal training programs. This study aims to conduct a systematic literature review to analyze the effectiveness and limitations of various training types on the physical demands of adolescent tennis players, summarizing the optimal training methods to enhance these physical qualities. Methods: From March 2024, a comprehensive search was conducted across four electronic databases: SCOPUS, PubMed, EBSCOhost (SPORTDiscus), and Web of Science. Additionally, Google Scholar and other sources of gray literature were referenced. Original research articles with an experimental design were included. The methodological quality of the included studies was evaluated using the Physiotherapy Evidence Database (PEDro) scale, and the overall scientific evidence was determined through the best evidence synthesis (BES). Results: Eighteen articles on exercise training met all inclusion criteria and were included in this systematic review. These studies maintained a high standard of quality, making their findings relatively credible. Among them, five studies investigated plyometric training, five focused on neuromuscular training, three explored functional training, two examined traditional strength training, and three assessed High-Intensity Interval Training. Conclusion: To enhance speed, strength, power, agility, and dynamic balance, it is recommended to prioritize plyometric training, neuromuscular training, and functional training over traditional tennis training. Functional training is particularly effective for improving flexibility and balance, while plyometric training is more suited for increasing power and speed. Neuromuscular training, when performed before routine workouts, is beneficial for enhancing speed, flexibility, and strength. Hard surface training is ideal for boosting power, whereas sand training excels in improving strength, speed, and balance. Combining HIIT with strength training is especially advantageous for enhancing short-distance sprinting, repeated sprint ability, and power. By appropriately combining and utilizing these training methods, the physical capabilities and sports performance of adolescent tennis players can be comprehensively optimized. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42024578147.

3.
Nutrients ; 16(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39064785

RESUMEN

(1) Background: The diversity of blood biomarkers used to assess the metabolic mechanisms of hydrogen limits a comprehensive understanding of its effects on improving exercise performance. This study evaluated the impact of hydrogen-rich gas (HRG) on metabolites following sprint-interval exercise using metabolomics approaches, aiming to elucidate its underlying mechanisms of action. (2) Methods: Ten healthy adult males participated in the Wingate Sprint-interval test (SIT) following 60 min of HRG or placebo (air) inhalation. Venous blood samples were collected for metabolomic analysis both before and after gas inhalation and subsequent to completing the SIT. (3) Results: Compared with the placebo, HRG inhalation significantly improved mean power, fatigue index, and time to peak for the fourth sprint and significantly reduced the attenuation values of peak power, mean power, and time to peak between the first and fourth. Metabolomic analysis highlighted the significant upregulation of acetylcarnitine, propionyl-L-carnitine, hypoxanthine, and xanthine upon HRG inhalation, with enrichment pathway analysis suggesting that HRG may foster fat mobilization by enhancing coenzyme A synthesis, promoting glycerophospholipid metabolism, and suppressing insulin levels. (4) Conclusions: Inhaling HRG before an SIT enhances end-stage anaerobic sprint capabilities and mitigates fatigue. Metabolomic analysis suggests that HRG may enhance ATP recovery during interval stages by accelerating fat oxidation, providing increased energy replenishment for late-stage sprints.


Asunto(s)
Hidrógeno , Metabolómica , Humanos , Masculino , Hidrógeno/metabolismo , Adulto Joven , Adulto , Rendimiento Atlético/fisiología , Hipoxantina/sangre , Entrenamiento de Intervalos de Alta Intensidad , Biomarcadores/sangre , Xantina , Acetilcarnitina/sangre , Administración por Inhalación , Fatiga
4.
Nutrients ; 16(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38794767

RESUMEN

(1) Background: Hydrogen (H2) may be a potential therapeutic agent for managing Long COVID symptoms due to its antioxidant and anti-inflammatory properties. However, more scientific literature is needed to describe the effects of H2 administration on treating symptoms. A study aimed to investigate the impact of hydrogen-rich water (HRW) administration on the fatigue and dyspnea of Long-COVID patients for 14 consecutive days. (2) Methods: In this randomized, single-blind, placebo-controlled study, 55 participants were recruited, and 23 of them were excluded. A total of 32 eligible participants were randomized into a hydrogen-rich water (HRW) group (n = 16) and a placebo water (PW) group (n = 16) in which they were instructed to consume hydrogen-rich water or placebo water for 14 days, respectively. The participants completed the Fatigue Severity Scale (FSS), Six-Minute Walk Test (6MWT), 30 s Chair Stand Test (30s-CST), Modified Medical Research Council Dyspnea Rating Scale (mMRC), Pittsburgh Sleep Quality Index (PSQI), and depression anxiety stress scale (DASS-21) before and after the intervention. A linear mixed-effects model was used to analyze the effects of HRW. Cohen's d values were used to assess the effect size when significance was observed. The mean change with 95% confidence intervals (95% CI) was also reported. (3) Results: The effects of HRW on lowering FSS scores (p = 0.046, [95% CI = -20.607, -0.198, d = 0.696] and improving total distance in the 6WMT (p < 0.001, [95% CI = 41.972, 61.891], d = 1.010), total time for the 30s-CST (p = 0.002, [95% CI = 1.570, 6.314], d = 1.190), and PSQI scores (p = 0.012, [95% CI = -5.169, 0.742], d = 1.274) compared to PW were of a significantly moderate effect size, while there was no significant difference in mMRC score (p = 0.556) or DASS-21 score (p > 0.143). (4) Conclusions: This study demonstrates that HRW might be an effective strategy for alleviating fatigue and improving cardiorespiratory endurance, musculoskeletal function, and sleep quality. Still, it does not ameliorate dyspnea among Long-COVID patients.


Asunto(s)
COVID-19 , Disnea , Fatiga , Hidrógeno , Humanos , Masculino , Femenino , Método Simple Ciego , COVID-19/complicaciones , Persona de Mediana Edad , Proyectos Piloto , Agua , SARS-CoV-2 , Adulto , Síndrome Post Agudo de COVID-19 , Anciano
5.
Front Public Health ; 11: 1281144, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38164444

RESUMEN

Background: Taichi is beneficial for functional mobility and balance in older adults. However, such benefits of Taichi when comparing to conventional exercise (CE) are not well understood due to large variance in study protocols and observations. Methods: We reviewed publications in five databases. Eligible studies that examined the effects of Taichi on the outcomes of functional mobility and balance in healthy older adults as compared to CE were included. Subgroup analyses compared the effects of different types of CE (e.g., single and multiple-type exercise) and different intervention designs (e.g., Taichi types) on those outcomes (Registration number: CRD42022331956). Results: Twelve studies consisting of 2,901 participants were included. Generally, compared to CE, Taichi induced greater improvements in the performance of Timed-Up-and-Go (SMD = -0.18, [-0.33 to -0.03], p = 0.040, I2 = 59.57%), 50-foot walking (MD = -1.84 s, [-2.62 to -1.07], p < 0.001, I2 = 0%), one-leg stance with eyes open (MD = 6.00s, [2.97 to 9.02], p < 0.001, I2 = 83.19%), one-leg stance with eyes closed (MD = 1.65 s, [1.35 to 1.96], p < 0.001, I2 = 36.2%), and functional reach (SMD = 0.7, [0.32 to 1.08], p < 0.001, I2 = 86.79%) tests. Subgroup analyses revealed that Taichi with relatively short duration (<20 weeks), low total time (≤24 h), and/or using Yang-style, can induce significantly greater benefits for functional mobility and balance as compared to CE. Uniquely, Taichi only induced significantly greater improvements in Timed-Up-and-Go compared to single- (SMD = -0.40, [-0.55 to -0.24], p < 0.001, I2 = 6.14%), but not multiple-type exercise. A significant difference between the effects of Taichi was observed on the performance of one-leg stance with eyes open when compared to CE without balance (MD = 3.63 s, [1.02 to 6.24], p = 0.006, I2 = 74.93%) and CE with balance (MD = 13.90s, [10.32 to 17.48], p < 0.001, I2 = 6.1%). No other significant difference was shown between the influences of different CE types on the observations. Conclusion: Taichi can induce greater improvement in functional mobility and balance in older adults compared to CE in a more efficient fashion, especially compared to single-type CE. Future studies with more rigorous design are needed to confirm the observations here.


Asunto(s)
Terapia por Ejercicio , Actividad Motora , Equilibrio Postural , Taichi Chuan , Anciano , Humanos , Ejercicio Físico , Terapia por Ejercicio/métodos , Estado de Salud , Extremidad Inferior , Taichi Chuan/métodos
6.
Artículo en Inglés | MEDLINE | ID: mdl-35564808

RESUMEN

(1) Background: Exercise that exceeds the body's accustomed load can lead to oxidative stress and increased fatigue during intense training or competition, resulting in decreased athletic performance and an increased risk of injury, and the new medicinal H2 may be beneficial as an antioxidant. Therefore, we explored the effect of short-term supplementation of hydrogen-rich water (HRW) on the work performance and fatigue recovery of dragon boat athletes after training. (2) Methods: Eighteen dragon boat athletes who trained for 4 h a day (2 h in the morning and 2 h in the afternoon) were divided into an HRW group (n = 9) and a placebo water (PW) group (n = 9), drinking HRW or PW for 7 days. Each participant completed 30 s rowing dynamometer tests, monitoring the heart rate at baseline (i.e., Day 1) and after the intervention (on Day 8). (3) Result: Drinking HRW increased the maximum power and average power of the 30 s rowing test and decreased the maximum heart rate during the period. After the rowing test, the HRW group's heart rate dropped significantly after 2 min of recovery, while the PW group's heart rate did not drop. There was no significant difference between the 30 s rowing distance and the predicted duration of rowing 500 m. (4) Conclusions: Drinking HRW in the short term can effectively improve the power performance of dragon boat athletes and is conducive to the recovery of the heart rate after exercise, indicating that HRW may be a suitable means of hydration for athletes.


Asunto(s)
Hidrógeno , Agua , Atletas , Fatiga , Frecuencia Cardíaca/fisiología , Humanos , Proyectos Piloto , Navíos
7.
Front Physiol ; 13: 988028, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36117685

RESUMEN

Objective: In this study, we examined the effects of pre-exercise H2 gas inhalation on physical fatigue (PF) and prefrontal cortex (PFC) activation during and after high-intensity cycling exercise. Methods: Twenty-four young men completed four study visits. On the first two visits, the maximum workload (Wmax) of cycling exercise of each participant was determined. On each of the other two visits, participants inhaled 20 min of either H2 gas or placebo gas after a baseline test of maximal voluntary isometric contraction (MVIC) of thigh. Then participants performed cycling exercise under their maximum workload. Ratings of perceived exertion (RPE), heart rate (HR) and the PFC activation by using functional near-infrared spectroscopy (fNIRS) was measured throughout cycling exercise. The MVIC was measured again after the cycling. Results: It was observed that compared to control, after inhaling H2 gas, participants had significantly lower RPE at each workload phase (p < 0.032) and lower HR at 50% Wmax, 75% Wmax, and 100% Wmax during cycling exercise (p < 0.037); the PFC activation was also significantly increased at 75 and 100% Wmax (p < 0.011). Moreover, the H2-induced changes in PF were significantly associated with that in PFC activation, that is, those who had higher PFC activation had lower RPE at 75% Wmax (p = 0.010) and lower HR at 100% Wmax (p = 0.016), respectively. Conclusion: This study demonstrated that pre-exercise inhalation of H2 gas can alleviate PF, potentially by maintaining high PFC activation during high-intensity exercise in healthy young adults.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA