Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 599(7884): 222-228, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34587621

RESUMEN

The transition metal kagome lattice materials host frustrated, correlated and topological quantum states of matter1-9. Recently, a new family of vanadium-based kagome metals, AV3Sb5 (A = K, Rb or Cs), with topological band structures has been discovered10,11. These layered compounds are nonmagnetic and undergo charge density wave transitions before developing superconductivity at low temperatures11-19. Here we report the observation of unconventional superconductivity and a pair density wave (PDW) in CsV3Sb5 using scanning tunnelling microscope/spectroscopy and Josephson scanning tunnelling spectroscopy. We find that CsV3Sb5 exhibits a V-shaped pairing gap Δ ~ 0.5 meV and is a strong-coupling superconductor (2Δ/kBTc ~ 5) that coexists with 4a0 unidirectional and 2a0 × 2a0 charge order. Remarkably, we discover a 3Q PDW accompanied by bidirectional 4a0/3 spatial modulations of the superconducting gap, coherence peak and gap depth in the tunnelling conductance. We term this novel quantum state a roton PDW associated with an underlying vortex-antivortex lattice that can account for the observed conductance modulations. Probing the electronic states in the vortex halo in an applied magnetic field, in strong field that suppresses superconductivity and in zero field above Tc, reveals that the PDW is a primary state responsible for an emergent pseudogap and intertwined electronic order. Our findings show striking analogies and distinctions to the phenomenology of high-Tc cuprate superconductors, and provide groundwork for understanding the microscopic origin of correlated electronic states and superconductivity in vanadium-based kagome metals.

2.
Proc Natl Acad Sci U S A ; 120(51): e2313487120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38096416

RESUMEN

This study investigates mechanisms that generate regularly spaced iron-rich bands in upland soils. These striking features appear in soils worldwide, but beyond a generalized association with changing redox, their genesis is yet to be explained. Upland soils exhibit significant redox fluctuations driven by rainfall, groundwater changes, or irrigation. Pattern formation in such systems provides an opportunity to investigate the temporal aspects of spatial self-organization, which have been heretofore understudied. By comparing multiple alternative mechanisms, we found that regular iron banding in upland soils is explained by coupling two sets of scale-dependent feedbacks, the general principle of Turing morphogenesis. First, clay dispersion and coagulation in iron redox fluctuations amplify soil Fe(III) aggregation and crystal growth to a level that negatively affects root growth. Second, the activation of this negative root response to highly crystalline Fe(III) leads to the formation of rhythmic iron bands. In forming iron bands, environmental variability plays a critical role. It creates alternating anoxic and oxic conditions for required pattern-forming processes to occur in distinctly separated times and determines durations of anoxic and oxic episodes, thereby controlling relative rates of processes accompanying oxidation and reduction reactions. As Turing morphogenesis requires ratios of certain process rates to be within a specific range, environmental variability thus modifies the likelihood that pattern formation will occur. Projected changes of climatic regime could significantly alter many spatially self-organized systems, as well as the ecological functioning associated with the striking patterns they present. This temporal dimension of pattern formation merits close attention in the future.

3.
Proc Natl Acad Sci U S A ; 120(39): e2218501120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722049

RESUMEN

While an array of ecological mechanisms has been shown to stabilize natural community dynamics, how the effectiveness of these mechanisms-including both their direction (stabilizing vs. destabilizing) and strength-shifts under a changing climate remains unknown. Using a 35-y dataset (1985 to 2019) from a desert stream in central Arizona (USA), we found that as annual mean air temperature rose 1°C and annual mean precipitation reduced by 40% over the last two decades, macroinvertebrate communities experienced dramatic changes, from relatively stable states during the first 15 y of this study to wildly fluctuating states highly sensitive to climate variability in the last 10 y. Asynchronous species responses to climatic variability, the primary mechanism historically undergirding community stability, greatly weakened. The emerging climate regime-specifically, concurrent warming and prolonged multiyear drought-resulted in community-wide synchronous responses and reduced taxa richness. Diversity loss and new establishment of competitors reorganized species interactions. Unlike manipulative experiments that often suggest stabilizing roles of species interactions, we found that reorganized species interactions switched from stabilizing to destabilizing influences, further amplifying community fluctuations. Our study provides evidence of climate change-induced modifications of mechanisms underpinning long-term community stability, resulting in an overall destabilizing effect.


Asunto(s)
Cambio Climático , Sequías , Arizona , Análisis por Conglomerados , Ríos
4.
Small ; 20(1): e2304558, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37649197

RESUMEN

Near-neutral zinc-air batteries (ZABs) have garnered significant research interest due to their high energy density, exceptional electrochemical reversibility, and adaptability to ambient air. However, these batteries suffer from substantial electrochemical polarization, low energy efficiency, and poor rate performance. In this study, a mesoporous carbon (meso-C) with a high specific surface area (1081 m2 g-1 ) and abundant porous structure for the cathode of near-neutral ZABs using a scalable synthesis method is prepared. The meso-C-based cathode is endowed with stable hydrophobicity and abundant electrochemical active sites, which considerably improve the energy efficiency, rate performance, and cycle life of the battery compare to commercial carbon black-based cathode when applied to near-neutral ZABs with 1 mol kg-1 (1 m) zinc acetate and 1 m zinc trifluoromethanesulfonate electrolytes. Additionally, the mesopores of meso-C facilitate the construction of better three-phase reaction interfaces and contribute to better electrochemical reversibility. The work presents a general and scalable approach for carbon materials in the cathode of near-neutral ZABs.

5.
Small ; : e2311197, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593375

RESUMEN

Biomass-derived porous carbon materials are meaningful to employ as a hard carbon precursor for anode materials of sodium-ion batteries (SIBs) from a sustainability perspective. Here, a straightforward approach is proposed to develop rich closed pores in pinenut-derived carbon, with the aim of improving Na+ plateau storage by adjusting the pyrolysis temperature. The optimized sample, namely the pinenut-derived carbon at 1300 °C, demonstrates remarkable reversible specific capacity of 278 mAh g-1, along with a high initial Coulomb efficiency of 85% and robust cycling stability (with a capacity retention of 89% after 800 cycles at 0.2 A g-1). In situ and ex situ analyses unveil that the developed closed pores play a significant role in enhancing the plateau capacity, providing compelling evidence for the "adsorption-filling" mechanism. Moreover, the corresponding full-cell achieves a high energy density of 245.7 Wh kg-1 (based on the total weight of both electrode active materials) and exhibits outstanding rate capability (191.4 mAh g-1 at 3 A g-1).

6.
J Transl Med ; 22(1): 458, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750454

RESUMEN

BACKGROUND: Corneal injuries, often leading to severe vision loss or blindness, have traditionally been treated with the belief that limbal stem cells (LSCs) are essential for repair and homeostasis, while central corneal epithelial cells (CCECs) were thought incapable of such repair. However, our research reveals that CCECs can fully heal and maintain the homeostasis of injured corneas in rats, even without LSCs. We discovered that CXCL14, under PAX6's influence, significantly boosts the stemness, proliferation, and migration of CCECs, facilitating corneal wound healing and homeostasis. This finding introduces CXCL14 as a promising new drug target for corneal injury treatment. METHODS: To investigate the PAX6/CXCL14 regulatory axis's role in CCECs wound healing, we cultured human corneal epithelial cell lines with either increased or decreased expression of PAX6 and CXCL14 using adenovirus transfection in vitro. Techniques such as coimmunoprecipitation, chromatin immunoprecipitation, immunofluorescence staining, western blot, real-time PCR, cell colony formation, and cell cycle analysis were employed to validate the axis's function. In vivo, a rat corneal epithelial injury model was developed to further confirm the PAX6/CXCL14 axis's mechanism in repairing corneal damage and maintaining corneal homeostasis, as well as to assess the potential of CXCL14 protein as a therapeutic agent for corneal injuries. RESULTS: Our study reveals that CCECs naturally express high levels of CXCL14, which is significantly upregulated by PAX6 following corneal damage. We identified SDC1 as CXCL14's receptor, whose engagement activates the NF-κB pathway to stimulate corneal repair by enhancing the stemness, proliferative, and migratory capacities of CCECs. Moreover, our research underscores CXCL14's therapeutic promise for corneal injuries, showing that recombinant CXCL14 effectively accelerates corneal healing in rat models. CONCLUSION: CCECs play a critical and independent role in the repair of corneal injuries and the maintenance of corneal homeostasis, distinct from that of LSCs. The PAX6/CXCL14 regulatory axis is pivotal in this process. Additionally, our research demonstrates that the important function of CXCL14 in corneal repair endows it with the potential to be developed into a novel therapeutic agent for treating corneal injuries.


Asunto(s)
Proliferación Celular , Quimiocinas CXC , Lesiones de la Cornea , Epitelio Corneal , Factor de Transcripción PAX6 , Cicatrización de Heridas , Factor de Transcripción PAX6/metabolismo , Factor de Transcripción PAX6/genética , Animales , Lesiones de la Cornea/metabolismo , Lesiones de la Cornea/patología , Humanos , Quimiocinas CXC/metabolismo , Quimiocinas CXC/genética , Epitelio Corneal/patología , Epitelio Corneal/metabolismo , Ratas Sprague-Dawley , Células Epiteliales/metabolismo , Ratas , Movimiento Celular , Masculino , Línea Celular
7.
Appl Environ Microbiol ; 89(8): e0092423, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37458600

RESUMEN

Cronobacter sakazakii is an opportunistic pathogen capable of causing severe infections, particularly in neonates. Despite the bacterium's strong pathogenicity, the pathogenicity of C. sakazakii is not yet well understood. Using a comparative proteomic profiling approach, we successfully identified pdxY, encoding a pyridoxal kinase involved in the recycling of pyridoxal 5'-phosphate (PLP), as a gene essential for the successful pathogenesis of C. sakazakii. Knocking out the pdxY gene resulted in slower growth and reduced virulence. Our study sheds light on the fundamental importance of pyridoxal kinase for the survival and virulence of C. sakazakii. The identification of pdxY as gene essential for successful pathogenesis provides a potential target for the development of new antibiotic treatments. IMPORTANCE The opportunistic pathogen Cronobacter sakazakii is known to cause severe infections, particularly in neonates, and can result in high mortality rates. In this study, we used a comparative proteomic profiling approach to identify genes essential for the successful pathogenesis of C. sakazakii. We successfully identified pdxY, encoding a pyridoxal kinase involved in the salvage pathway of pyridoxal 5'-phosphate (PLP), as a gene essential for the successful pathogenesis of C. sakazakii. Knocking out the pdxY gene resulted in impaired growth and reduced virulence. This study sheds light on the fundamental importance of pyridoxal kinase for the survival and virulence of C. sakazakii, which can be a potential target for the development of new antibiotic treatments. This study highlights the importance of comparative proteomic profiling in identifying virulence factors that can be targeted for the development of new antibiotics.


Asunto(s)
Cronobacter sakazakii , Cronobacter , Recién Nacido , Humanos , Vitamina B 6 , Virulencia , Piridoxal Quinasa/genética , Cronobacter sakazakii/genética , Cronobacter sakazakii/metabolismo , Proteómica , Fosfato de Piridoxal/metabolismo , Piridoxina , Antibacterianos , Fosfatos , Vitaminas
8.
Appl Environ Microbiol ; 89(10): e0102823, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37750707

RESUMEN

The increasing problem of antibiotic resistance has driven the search for virulence factors in pathogenic bacteria, which can serve as targets for the development of new antibiotics. Although whole-genome Tn5 transposon mutagenesis combined with phenotypic assays has been a widely used approach, its efficiency remains low due to labor-intensive processes. In this study, we aimed to identify specific genes and proteins associated with the virulence of Cronobacter sakazakii, a pathogenic bacterium known for causing severe infections, particularly in infants and immunocompromised individuals. By employing a combination of genetic screening, comparative proteomics, and in vivo validation using zebrafish and rat models, we rapidly screened highly virulent strains and identified two genes, rcsA and treR, as potential regulators of C. sakazakii toxicity toward zebrafish and rats. Proteomic profiling revealed upregulated proteins upon knockout of rcsA and treR, including FabH, GshA, GppA, GcvH, IhfB, RfaC, MsyB, and three unknown proteins. Knockout of their genes significantly weakened bacterial virulence, confirming their role as potential virulence factors. Our findings contribute to understanding the pathogenicity of C. sakazakii and provide insights into the development of targeted interventions and therapies against this bacterium.IMPORTANCEThe emergence of antibiotic resistance in pathogenic bacteria has become a critical global health concern, necessitating the identification of virulence factors as potential targets for the development of new antibiotics. This study addresses the limitations of conventional approaches by employing a combination of genetic screening, comparative proteomics, and in vivo validation to rapidly identify specific genes and proteins associated with the virulence of Cronobacter sakazakii, a highly pathogenic bacterium responsible for severe infections in vulnerable populations. The identification of two genes, rcsA and treR, as potential regulators of C. sakazakii toxicity toward zebrafish and rats and the proteomic profiling upon knockout of rcsA and treR provides novel insights into the mechanisms underlying bacterial virulence. The findings contribute to our understanding of C. sakazakii's pathogenicity, shed light on the regulatory pathways involved in bacterial virulence, and offer potential targets for the development of novel interventions against this highly virulent bacterium.


Asunto(s)
Cronobacter sakazakii , Cronobacter , Infecciones por Enterobacteriaceae , Humanos , Lactante , Ratas , Animales , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Cronobacter sakazakii/genética , Cronobacter sakazakii/metabolismo , Pez Cebra , Proteómica , Infecciones por Enterobacteriaceae/microbiología , Antibacterianos/farmacología , Antibacterianos/metabolismo , Pruebas Genéticas , Cronobacter/genética
9.
Phys Rev Lett ; 130(20): 206001, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37267540

RESUMEN

Revealing the energy and spatial characteristics of impurity-induced states in superconductors is essential for understanding their mechanism and fabricating a new quantum state by manipulating impurities. Here, by using high-resolution scanning tunneling microscopy and spectroscopy, we investigate the spatial distribution and magnetic field response of the impurity states in (Li_{1-x}Fe_{x})OHFeSe. We detect two pairs of strong in-gap states on the "dumbbell-shaped" defects. They display damped oscillations with different phase shifts and a direct phase-energy correlation. These features have long been predicted for the classical Yu-Shiba-Rusinov (YSR) state and are demonstrated here with unprecedented resolution for the first time. Moreover, upon applying magnetic field, all in-gap state peaks remarkably split into two rather than shift, and the splitting strength is field orientation dependent. Via detailed numerical model calculations, we find such an anisotropic splitting behavior can be naturally induced by a high-spin impurity coupled to an anisotropic environment, highlighting how magnetic anisotropy affects the behavior of YSR states.

10.
Nature ; 549(7671): 247-251, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28905895

RESUMEN

The ability to control chemical and physical structuring at the nanometre scale is important for developing high-performance thermoelectric materials. Progress in this area has been achieved mainly by enhancing phonon scattering and consequently decreasing the thermal conductivity of the lattice through the design of either interface structures at nanometre or mesoscopic length scales or multiscale hierarchical architectures. A nanostructuring approach that enables electron transport as well as phonon transport to be manipulated could potentially lead to further enhancements in thermoelectric performance. Here we show that by embedding nanoparticles of a soft magnetic material in a thermoelectric matrix we achieve dual control of phonon- and electron-transport properties. The properties of the nanoparticles-in particular, their superparamagnetic behaviour (in which the nanoparticles can be magnetized similarly to a paramagnet under an external magnetic field)-lead to three kinds of thermoelectromagnetic effect: charge transfer from the magnetic inclusions to the matrix; multiple scattering of electrons by superparamagnetic fluctuations; and enhanced phonon scattering as a result of both the magnetic fluctuations and the nanostructures themselves. We show that together these effects can effectively manipulate electron and phonon transport at nanometre and mesoscopic length scales and thereby improve the thermoelectric performance of the resulting nanocomposites.

12.
Am Nat ; 199(6): 758-775, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35580228

RESUMEN

AbstractBy virtue of their niche construction traits, plants play a significant role in shaping landscapes. The resultant outcome could change the selective environment, which then influences the evolution of these same plants. To date, almost all biogeomorphic models have assumed that niche construction traits are invariant in time. Conversely, niche construction studies often assume that independent abiotic changes either are nonexistent or are simply linear. Here, I consider the concomitant evolution of plant niche construction traits during complex landscape development. I construct a geo-evolutionary model that couples a population genetic module with a landscape development module. Allowing plants to evolve always results in landforms different from those that appear when evolution is not included. The topographic difference between cases with and without evolution ranges from a small difference in steady-state elevation (topography) to pronounced differences in landforms. Furthermore, evolution of niche construction traits could introduce alternative stable states and hysteresis, modifying the responses of landscapes to environmental stress. Allowing the landscape to develop while evolution occurs alters evolutionary trajectories for niche construction traits. The system can even develop into states that suppress natural selection. Model results support the need to integrate niche construction theory and biogeomorphology to better understand both.


Asunto(s)
Evolución Biológica , Selección Genética , Ecosistema , Fenotipo
13.
Small ; 18(45): e2204830, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36161496

RESUMEN

Sodium-ion batteries (SIBs) have attracted wide interest for energy storage because of the sufficient sodium element reserve on the earth; however, the electrochemical performance of SIBs cannot achieve the requirements so far, especially, the limitation of cathode materials. Here, a kilogram-scale route to synthesize Na2 FePO4 F/carbon/multi-walled carbon nanotubes microspheres (NFPF@C@MCNTs) composite with a high tap density of 1.2 g cm-3 is reported. The NFPF@C@MCNTs cathode exhibits a reversible specific capacity of 118.4 mAh g-1 at 0.1 C. Even under 5 C with high mass loading (10 mg cm-2 ), the specific capacity still maintains at 56.4 mAh g-1 with a capacity retention rate of 97% after 700 cycles. In addition, a hard carbon||NFPF@C@MCNTs pouch cell is assembled and tested, which exhibits a volumetric energy density of 325 Wh L-1 and gravimetrical energy density of 210 Wh kg-1 (base on electrode massing), and it provides more than 200 cycles with a capacity retention rate of 92%. Furthermore, the pouch cell can operate in an all-climate environment ranging from -40 to 80 °C. These results demonstrate that the NFPF@C@MCNTs microspheres are a promising candidate cathode for SIBs and facilitate its practical application in sodium cells.


Asunto(s)
Nanotubos de Carbono , Sodio , Hierro , Electrodos , Fluoruros
14.
Acc Chem Res ; 54(20): 3883-3894, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34622652

RESUMEN

ConspectusBuilding rechargeable batteries for subzero temperature application is highly demanding for various specific applications including electric vehicles, grid energy storage, defense/space/subsea explorations, and so forth. Commercialized nonaqueous lithium ion batteries generally adapt to a temperature above -20 °C, which cannot well meet the requirements under colder conditions. Certain improvements have been achieved with nascent materials and electrolyte systems but have mainly been restrained to discharge and within a small rate at temperatures above -40 °C. Moreover, the recharging process of batteries based on the graphite anode still faces huge challenges from the simultaneous Li+ intercalation and potential Li stripping at subzero temperatures. Revealing the temperature-dependent evolution of physicochemical and electrochemical properties will greatly benefit our understanding of the limiting factors at low temperature, which is of significant importance.Herein, we dissect the ion movements in the liquid electrolyte and solid electrode as well as their interphase to analyze the temperature effect on Li+-diffusion behavior during charging/discharging processes. An electrolyte is the vital factor, and its ionic conductivity guarantees the smooth operation of the battery. However, it is the sluggish diffusion in the solid, especially the charge transfer at the solid electrolyte/electrode interfaces (SEI), that greatly limits the kinetics at low temperature. Many strategies have been put forward to tame electrolytes for low-temperature application. From a macroscopic point of view, multiple solvents are mixed to adjust the liquid temperature range and viscosity. With respect to the microscopic nature, research is focusing on the solvation structure by formulating the ratio of Li+ ions to solvent molecules. The binding energy of the Li+-solvent complex is crucial for the desolvation process at low temperature, which is manipulated with fluorinated solvents or other weakly solvating electrolytes. On the basis of an optimized electrolyte, electrodes and their reaction mechanism need to be coupled carefully because different materials show totally different responses to temperature change. To avoid the sluggish desolvation process or slow diffusion in the bulk intercalation compounds, several kinds of materials are summarized for low temperature use. The intercalation pseudocapacitive behavior can compensate for the kinetics to some extent, and a metal anode is a good candidate for replacing a graphite anode to build high-energy-density batteries at subzero temperature. It is also a wise choice to develop nascent battery chemistry based on the co-intercalation of solvent molecules into electrodes. Furthermore, the interfacial resistance contributes a lot at low temperature, which need be modified to accelerate the Li+ diffusion across the film. This will be linked to the electrolyte, exactly speaking, the solvation structure, to regulate the organic and inorganic components as well as the structure. Although it is difficult to investigate SEI on a graphite anode owing to its poor performance at low temperature, great efforts on Li metal anodes have offered some valuable information as reference. It is worth mentioning that the improvement in low-temperature performance calls for not only a change in the single composition but also the synergetic effect of each part in the whole battery. The elementary studies covered in this account could be taken as insight into some key strategies that help advance the low-temperature battery chemistry.

15.
Phys Rev Lett ; 129(15): 157001, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36269950

RESUMEN

The connection between unconventional superconductivity and charge density waves (CDWs) has intrigued the condensed matter community and found much interest in the recently discovered superconducting Kagome family of AV_{3}Sb_{5} (A=K, Cs, Rb). X-ray diffraction and Raman spectroscopy measurements established that the CDW order in CsV_{3}Sb_{5} comprises of a 2×2×4 structure with stacking of layers in a star-of-David (SD) and inverse-star-of-David (ISD) pattern along the c-axis direction. Such interlayer ordering will induce a vast normalization of the electronic ground state; however, it has not been observed in Fermi surface measurements. Here we report quantum oscillations of CsV_{3}Sb_{5} using tunnel diode oscillator frequency measurements. We observed a large number of frequencies, many of which were not reported. The number of frequencies cannot be explained by DFT calculations when only SD or ISD distortion is considered. Instead, our results are consistent with calculations when interlayer ordering is taken into account, providing strong evidence that the CDW phase of CsV_{3}Sb_{5} has complicated structure distortion which in turn has dramatic effects on the Fermi surface properties.

16.
Langmuir ; 38(36): 11054-11067, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36049185

RESUMEN

The development of g-C3N4-based photocatalysts with abundant active sites is of great significance for photocatalytic reactions. Herein, a smart and robust strategy was presented to fabricate three-dimensional (3D) g-C3N4 nanosheet-coated alginate-based hierarchical porous carbon (g-C3N4@HPC), including coating melamine on calcium alginate (CA) hydrogel beads, freeze-drying hydrogel beads as well as pyrolysis at high temperatures. The resulting photocatalyst possessed a significantly high surface area and a large amount of interconnected macropores compared with porous carbon without the melamine coating. The unique structural features could effectively inhibit the curling and agglomeration of g-C3N4 nanosheets, provide abundant photocatalytic active sites, and promote mass diffusion. Therefore, the g-C3N4@HPC composite exhibited remarkable photocatalytic activity and outstanding stability toward the photoreduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by NaBH4 under natural sunlight and simulated visible-light irradiation (λ > 420 nm) using a 300 W xenon lamp. Moreover, the mechanism toward the photocatalytic reaction was extensively studied by quenching experiments and electron spin resonance (ESR) experiments. The results showed that active hydrogen species were able to be achieved by following a dual-channel pathway in the NaBH4 system, which included photocatalytic reduction of H+ ions and photocatalytic oxidation of BH4- ions. This work not only opens up a new way to design efficient photocatalysts for various reactions but also provides a reference for an in-depth study of the photoreduction mechanism.

17.
Nature ; 534(7606): 254-8, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-27279223

RESUMEN

Breviatea form a lineage of free living, unicellular protists, distantly related to animals and fungi. This lineage emerged almost one billion years ago, when the oceanic oxygen content was low, and extant Breviatea have evolved or retained an anaerobic lifestyle. Here we report the cultivation of Lenisia limosa, gen. et sp. nov., a newly discovered breviate colonized by relatives of animal-associated Arcobacter. Physiological experiments show that the association of L. limosa with Arcobacter is driven by the transfer of hydrogen and is mutualistic, providing benefits to both partners. With whole-genome sequencing and differential proteomics, we show that an experimentally observed fitness gain of L. limosa could be explained by the activity of a so far unknown type of NAD(P)H-accepting hydrogenase, which is expressed in the presence, but not in the absence, of Arcobacter. Differential proteomics further reveal that the presence of Lenisia stimulates expression of known 'virulence' factors by Arcobacter. These proteins typically enable colonization of animal cells during infection, but may in the present case act for mutual benefit. Finally, re-investigation of two currently available transcriptomic data sets of other Breviatea reveals the presence and activity of related hydrogen-consuming Arcobacter, indicating that mutualistic interaction between these two groups of microbes might be pervasive. Our results support the notion that molecular mechanisms involved in virulence can also support mutualism, as shown here for Arcobacter and Breviatea.


Asunto(s)
Arcobacter/fisiología , Eucariontes/fisiología , Hidrógeno/metabolismo , Simbiosis , Arcobacter/genética , Eucariontes/enzimología , Eucariontes/genética , Aptitud Genética , Hidrogenasas/genética , Hidrogenasas/metabolismo , NADP/metabolismo , Proteómica , Simbiosis/genética , Transcriptoma , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
18.
Clin Exp Pharmacol Physiol ; 49(8): 858-870, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35598290

RESUMEN

Contrast-induced nephropathy (CIN) is a common complication with adverse outcome after iodinated-contrast injection, yet still lacking effective medication. Heme oxygenase-1 (HO-1) has been reported to play an important role against renal injuries. Hemin, a HO-1 inducer and anti-porphyria medicine, may have a promising effect against CIN. In this study, we aim to investigate the effect of hemin on CIN model and the underlying molecular mechanisms in human proximal tubule epithelial cells (HK-2). To mimic a common condition in percutaneous coronary intervention (PCI) patients, CIN was induced by intravenous iopromide in high-fat fed diabetic rats. We found hemin, given right before iopromide, mitigated CIN with enhanced antioxidative capacity and reduced oxidative stress. HK-2 cells insulted by iopromide demonstrated decreased cell vitality and rising reactive oxygen species (ROS), which could also be inhibited by hemin. The effects of hemin involved a key molecule in ferroptosis, glutathione peroxidase (GPX4), whose down-expression by small interfering RNA (siRNA) reversed the effect of hemin on HK-2 cells. Furthermore, hemin's induction of GPX4 involved HO-1 and nuclear factor erythroid 2-related factor 2 (Nrf2). Either HO-1 or Nrf2 inhibitor prevented hemin's effect on GPX4 to a comparable extent, and over-expression of Nrf2 increased GPX4 expression. Moreover, intervention of ferroptosis inhibitor liproxstatin-1 also alleviated CIN in vivo. Therefore, we showed hemin mitigated CIN, inhibiting oxidative stress and ferroptosis, by upregulation of GPX4 via activation of HO-1/Nrf2. Hemin, as a clinical medicine, has a translational significance in treating CIN, and anti-ferroptosis is a potential therapeutic strategy for CIN.


Asunto(s)
Medios de Contraste , Células Epiteliales , Ferroptosis , Fármacos Hematológicos , Hemina , Enfermedades Renales , Animales , Células Cultivadas , Medios de Contraste/efectos adversos , Diabetes Mellitus Experimental/etiología , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Ferroptosis/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Fármacos Hematológicos/farmacología , Hemo-Oxigenasa 1/metabolismo , Hemina/farmacología , Humanos , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Enfermedades Renales/prevención & control , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/fisiopatología , Factor 2 Relacionado con NF-E2/metabolismo , Intervención Coronaria Percutánea , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , ARN Interferente Pequeño/genética , Ratas , Transducción de Señal
19.
Angew Chem Int Ed Engl ; 61(47): e202211933, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36193861

RESUMEN

Lithium-sulfur (Li-S) batteries with high energy density are currently receiving enormous attention. However, their redox kinetics at low temperature is extremely tardy, and polysulfides shuttling is serious at high temperature, which severely hinders the implementation of wide-temperature Li-S batteries. Herein, we propose an all-climate Li-S battery based on an ether-based electrolyte by using a porous sub-nano aromatic framework (SAF) modified separator. It's demonstrated that the fully conjugated SAF-3 with a small pore size (0.97 nm) and narrow band gap (1.72 eV) could efficiently block the polysulfides shuttling at elevated temperature and boost the polysulfides conversion at low temperature. Consequently, the SAF-3 modified cells work well in a wide temperature ranging from -40 to 60 °C. Furthermore, when operated at room temperature, the modified cell exhibits 90 % capacity retention over 100 cycles under high-sulfur loading (5.0 mg cm-2 ) and lean electrolyte (5 µL mg-1 ).

20.
Angew Chem Int Ed Engl ; 61(36): e202208345, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35833711

RESUMEN

Graphite anode suffers from great capacity loss and even fails to charge (i.e. Li+ -intercalation) under low temperature, mainly arising from the large overpotential including sluggish de-solvation process and insufficient ions movement in the solid electrolyte interphase (SEI). Herein, an electrolyte is developed by utilizing weakly solvated molecule ethyl trifluoroacetate and film-forming fluoroethylene carbonate to achieve smooth de-solvation and high ionic conductivity at low temperature. Evolution of SEI formed at different temperatures is further investigated to propose an effective room-temperature SEI formation strategy for low-temperature operations. The synergetic effect of tamed electrolyte and optimized SEI enables graphite with a reversible charge/discharge capacity of 183 mAh g-1 at -30 °C and fast-charging up to 6C-rate at room temperature. Moreover, graphite||LiFePO4 full cell maintains a capacity retention of 78 % at -30 °C, and 37 % even at a super-low temperature of -60 °C. This work offers a progressive insight towards fast-charging and low-temperature batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA