RESUMEN
Niemann Pick type C is an inborn error of metabolism (IEM), classified as a lysosomal storage disease (LSD) caused by a dysfunction in NPC transport protein, that leads to intracellular accumulation of non-esterified cholesterol and other lipids. Clinical manifestations are ample, with visceral and neurological symptoms. Miglustat, a molecule that reversibly inhibits glucosylceramide synthase is used as treatment for this disorder. Studies demonstrated the influence of oxidative stress and inflammation in IEM, as well in animal model of NP-C disease. Nonetheless, literature lacks data on patients, so our work aimed to investigate if there is influence of chronic inflammation in the pathophysiology of NP-C disease, and the effect of miglustat, N-acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). We evaluated the plasmatic cytokines in NPC patients at diagnosis and during the treatment with miglustat. Additionally, we performed an in vitro study with antioxidants NAC (1 mM and 2.5 mM) and CoQ10 (5 µM and 10 µM), where we could verify its effect on inflammatory parameters, as well as in cholesterol accumulation. Our results showed that NP-C patients have higher plasmatic levels of pro and anti-inflammatory cytokines (IL-6, IL-8, and IL-10) at diagnosis and the treatment with miglustat was able to restore it. In vitro study showed that treatment with antioxidants in higher concentrations significantly decrease cholesterol accumulation, and NAC at 2.5 mM normalized the level of pro-inflammatory cytokines. Although the mechanism is not completely clear, it can be related to restoration in lipid traffic and decrease in oxidative stress caused by antioxidants.
Asunto(s)
Enfermedad de Niemann-Pick Tipo C , 1-Desoxinojirimicina/análogos & derivados , Acetilcisteína/farmacología , Antioxidantes/farmacología , Colesterol , Citocinas , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Ubiquinona/análogos & derivadosRESUMEN
Niemann-Pick C disease (NPC) is an autosomal recessive genetic disorder resulting from mutation in one of two cholesterol transport genes: NPC1 or NPC2, causing accumulation of unesterified cholesterol, together with glycosphingolipids, within the endosomal/lysosomal compartment of cells. The result is a severe disease in both multiple peripheral organs and the central nervous system, causing neurodegeneration and early death. However, the pathophysiological mechanisms of NPC1 remain poorly understood. Recent studies have shown that the primary lysosomal defect found in fibroblasts from NPC1 patients is accompanied by a deregulation of mitochondrial organization and function. There is currently no cure for NPC1, but recently the potential of ß-cyclodextrin (ß-CD) for the treatment of the disease was discovered, which resulted in the redistribution of cholesterol from subcellular compartments to the circulation and increased longevity in an animal model of NPC1. Considering the above, the present work evaluated the in vitro therapeutic potential of ß-CD to reduce cholesterol in fibroblasts from NPC1 patients. ß-CD was used in its free and nanoparticulate form. We also evaluated the ß-CD potential to restore mitochondrial functions, as well as the beneficial combined effects of treatment with antioxidants N-Acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). Besides, we evaluated oxidative and nitrative stress parameters in NPC1 patients. We showed that oxidative and nitrative stress could contribute to the pathophysiology of NPC1, as the levels of lipoperoxidation and the nitrite and nitrate levels were increased in these patients when compared to healthy individuals, as well as DNA damage. The nanoparticles containing ß-CD reduced the cholesterol accumulated in the NPC1 fibroblasts. This result was potentiated by the concomitant use of the nanoparticles with the antioxidants NAC and CoQ10 compared to those presented by healthy individuals cells Ì. In addition, treatments combining ß-CD nanoparticles and antioxidants could reduce mitochondrial oxidative stress, demonstrating advantages compared to free ß-CD. The results obtained are promising regarding the combined use of ß-CD loaded nanoparticles and antioxidants in the treatment of NPC1 disease.
Asunto(s)
Enfermedad de Niemann-Pick Tipo C , beta-Ciclodextrinas , Animales , Enfermedad de Niemann-Pick Tipo C/genética , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , beta-Ciclodextrinas/farmacología , beta-Ciclodextrinas/uso terapéutico , beta-Ciclodextrinas/metabolismo , Oxidación-Reducción , Mitocondrias/metabolismo , Colesterol/metabolismoRESUMEN
Maple syrup urine disease (MSUD) is a genetic disorder that leads the accumulation of branched-chain amino acids (BCAA) leucine (Leu), isoleucine, valine and metabolites. The symptomatology includes psychomotor delay and mental retardation. MSUD therapy comprises a lifelong protein strict diet with low BCAA levels and is well established that high concentrations of Leu and/or its ketoacid are associated with neurological symptoms. Recently, it was demonstrated that the phenylbutyrate (PBA) have the ability to decrease BCAA concentrations. This work aimed the development of lipid-based nanoparticles loaded with PBA, capable of targeting to the central nervous system in order to verify its action mechanisms on oxidative stress and cell death in brain of rats subjected to a MSUD chronic model. PBA-loaded nanoparticles treatment was effective in significantly decreasing BCAA concentration in plasma and Leu in the cerebral cortex of MSUD animals. Furthermore, PBA modulate the activity of catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase enzymes, as well as preventing the oxidative damage to lipid membranes and proteins. PBA was also able to decrease the glial fibrillary acidic protein concentrations and partially decreased the reactive species production and caspase-3 activity in MSUD rats. Taken together, the data indicate that the PBA-loaded nanoparticles could be an efficient adjuvant in the MSUD therapy, protecting against oxidative brain damage and neuroinflammation.
Asunto(s)
Aminoácidos de Cadena Ramificada/sangre , Corteza Cerebral/efectos de los fármacos , Enfermedad de la Orina de Jarabe de Arce/metabolismo , Nanopartículas/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Fenilbutiratos/administración & dosificación , Animales , Catalasa/metabolismo , Corteza Cerebral/metabolismo , Glutatión Peroxidasa/metabolismo , Enfermedad de la Orina de Jarabe de Arce/sangre , Enfermedad de la Orina de Jarabe de Arce/inducido químicamente , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismoRESUMEN
ß-Cyclodextrin (ß-CD) is being considered a promising therapy for Niemann-Pick C (NPC) disease because of its ability to mobilise the entrapped cholesterol from lysosomes, however, a major limitation is its inability to cross the blood-brain barrier (BBB) and address the central nervous system (CNS) manifestations of the disease. Considering this, we aimed to design nanoparticles able to cross the BBB and deliver ß-CD into the CNS lysosomes. The physicochemical characteristics of ß-CD-loaded nanoparticles were evaluated by dynamic light scattering, small-angle X-ray scattering, and cryogenic transmission electron microscopy. The in vitro analyses were performed with NPC dermal fibroblasts and the ß-CD-loaded nanoparticles were tracked in vivo. The nanoparticles showed a mean diameter around 120 nm with a disordered bicontinuous inner structure. The nanoparticles did not cause decrease in cell viability, impairment in the antioxidant enzymes activity, damage to biomolecules or release of reactive species in NPC dermal fibroblasts; also, they did not induce genotoxicity or alter the mitochondrial function in healthy fibroblasts. The ß-CD-loaded nanoparticles were taken up by lysosomes reducing the cholesterol accumulated in NPC fibroblasts and reached the CNS of mice more intensely than other organs, demonstrating advantages compared to the free ß-CD. The results demonstrated the potential of the ß-CD-loaded nanoparticles in reducing the brain impairment of NPC.
Asunto(s)
Colesterol/metabolismo , Nanopartículas/administración & dosificación , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , beta-Ciclodextrinas/administración & dosificación , Animales , Transporte Biológico , Estudios de Casos y Controles , Niño , Femenino , Fibroblastos/efectos de los fármacos , Humanos , Lisosomas/metabolismo , Masculino , Ratones , Enfermedad de Niemann-Pick Tipo C/metabolismo , beta-Ciclodextrinas/farmacologíaRESUMEN
X-linked adrenoleukodystrophy (X-ALD) is an inherited disease characterized by progressive inflammatory demyelization in the brain, adrenal insufficiency, and an abnormal accumulation of very long chain fatty acids (VLCFA) in tissue and body fluids. Considering that inflammation might be involved in pathophysiology of X-ALD, we aimed to investigate pro- and anti-inflammatory cytokines in plasma from three different male phenotypes (CCER, AMN, and asymptomatic individuals). Our results showed that asymptomatic patients presented increased levels of pro-inflammatory cytokines IL-1ß, IL-2, IL-8, and TNF-α and the last one was also higher in AMN phenotype. Besides, asymptomatic patients presented higher levels of anti-inflammatory cytokines IL-4 and IL-10. AMN patients presented higher levels of IL-2, IL-5, and IL-4. We might hypothesize that inflammation in X-ALD is related to plasmatic VLCFA concentration, since there were positive correlations between C26:0 plasmatic levels and pro-inflammatory cytokines in asymptomatic and AMN patients and negative correlation between anti-inflammatory cytokine and C24:0/C22:0 ratio in AMN patients. The present work yields experimental evidence that there is an inflammatory imbalance associated Th1, (IL-2, IL-6, and IFN-γ), Th2 (IL-4 and IL-10), and macrophages response (TNF-α and IL-1ß) in the periphery of asymptomatic and AMN patients, and there is correlation between VLCFA plasmatic levels and inflammatory mediators in X-ALD. Furthermore, we might also speculate that the increase of plasmatic cytokines in asymptomatic patients could be considered an early biomarker of brain damage and maybe also a predictor of disease progression.
Asunto(s)
Adrenoleucodistrofia/inmunología , Citocinas/sangre , Macrófagos/inmunología , Células TH1/inmunología , Adolescente , Adrenoleucodistrofia/sangre , Adulto , Niño , Preescolar , Ácidos Grasos/sangre , Humanos , Lactante , Interleucina-10/sangre , Interleucina-1beta/sangre , Interleucina-2/sangre , Interleucina-4/sangre , Interleucina-5/sangre , Masculino , Persona de Mediana Edad , Factor de Necrosis Tumoral alfa/sangre , Adulto JovenRESUMEN
Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disease caused by a deficient activity of iduronate-2-sulfatase, leading to abnormal accumulation of glycosaminoglycans (GAG). The main treatment for MPS II is enzyme replacement therapy (ERT). Previous studies described potential benefits of six months of ERT against oxidative stress in patients. Thus, the aim of this study was to investigate oxidative, nitrative and inflammatory biomarkers in MPS II patients submitted to long term ERT. It were analyzed urine and blood samples from patients on ERT (mean time: 5.2years) and healthy controls. Patients presented increased levels of lipid peroxidation, assessed by urinary 15-F2t-isoprostane and plasmatic thiobarbituric acid-reactive substances. Concerning to protein damage, urinary di-tyrosine (di-Tyr) was increased in patients; however, sulfhydryl and carbonyl groups in plasma were not altered. It were also verified increased levels of urinary nitrate+nitrite and plasmatic nitric oxide (NO) in MPS II patients. Pro-inflammatory cytokines IL-1ß and TNF-α were increased in treated patients. GAG levels were correlated to di-Tyr and nitrate+nitrite. Furthermore, IL-1ß was positively correlated with TNF-α and NO. Contrastingly, we did not observed alterations in erythrocyte superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities, in reduced glutathione content and in the plasmatic antioxidant capacity. Although some parameters were still altered in MPS II patients, these results may suggest a protective role of long-term ERT against oxidative stress, especially upon oxidative damage to protein and enzymatic and non-enzymatic defenses. Moreover, the redox imbalance observed in treated patients seems to be GAG- and pro-inflammatory cytokine-related.
Asunto(s)
Citocinas/metabolismo , Terapia de Reemplazo Enzimático , Glicosaminoglicanos/metabolismo , Mucopolisacaridosis II/tratamiento farmacológico , Mucopolisacaridosis II/metabolismo , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Humanos , Iduronato Sulfatasa/uso terapéutico , Interleucina-1beta/metabolismo , Masculino , Mucopolisacaridosis II/inmunología , Estrés Nitrosativo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Adulto JovenRESUMEN
Mucopolysaccharidosis type IVA (MPS IVA) is an inborn error of glycosaminoglycan (GAG) catabolism due to the deficient activity of N-acetylgalactosamine-6-sulfate sulfatase that leads to accumulation of the keratan sulfate and chondroitin 6-sulfate in body fluids and in lysosomes. The pathophysiology of this lysosomal storage disorder is not completely understood. The aim of this study was to investigate oxidative stress parameters, pro-inflammatory cytokine and GAG levels in MPS IVA patients. We analyzed urine and blood samples from patients under ERT (n=17) and healthy age-matched controls (n=10-15). Patients presented a reduction of antioxidant defense levels, assessed by a decrease in glutathione content and by an increase in superoxide dismutase activity in erythrocytes. Concerning lipid and protein damage, it was verified increased urine isoprostanes and di-tyrosine levels and decreased plasma sulfhydryl groups in MPS IVA patients compared to controls. MPS IVA patients showed higher DNA damage than control group and this damage had an oxidative origin in both pyrimidine and purine bases. Interleukin 6 was increased in patients and presented an inverse correlation with GSH levels, showing a possible link between inflammation and oxidative stress in MPS IVA disease. The data presented suggest that pro-inflammatory and pro-oxidant states occur in MPS IVA patients even under ERT. Taking these results into account, supplementation of antioxidants in combination with ERT can be a tentative therapeutic approach with the purpose of improving the patient's quality of life. To the best of our knowledge, this is the first study relating MPS IVA patients with oxidative stress.
Asunto(s)
Condroitinsulfatasas/uso terapéutico , Terapia de Reemplazo Enzimático/métodos , Inflamación/tratamiento farmacológico , Mucopolisacaridosis IV/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , 8-Hidroxi-2'-Desoxicoguanosina , Adolescente , Adulto , Proteínas Sanguíneas/análisis , Niño , Creatinina/orina , Citocinas/sangre , Desoxiguanosina/análogos & derivados , Desoxiguanosina/orina , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Femenino , Glutatión/sangre , Glicosaminoglicanos/orina , Humanos , Inflamación/sangre , Inflamación/orina , Isoprostanos/orina , Masculino , Mucopolisacaridosis IV/sangre , Mucopolisacaridosis IV/orina , Peroxidasa/sangre , Superóxido Dismutasa/sangre , Resultado del Tratamiento , Tirosina/análogos & derivados , Tirosina/orina , Adulto JovenRESUMEN
X-linked adrenoleukodystrophy (X-ALD) is the most frequent peroxisomal disorder that is characterized by progressive demyelination of the white matter, adrenal insufficiency, and accumulation of very long-chain fatty acids in body fluid and tissues. This disorder is clinically heterogeneous with seven different phenotypes in male patients and five phenotypes in female carriers. An ultimate treatment for X-ALD is not available. Depending on the rate of the disease progression and the degree of an individual handicap, special needs and challenges vary greatly. The exact mechanisms underlying the pathophysiology of this multifactorial neurodegenerative disorder remains obscure. Previous studies has been related oxidative stress with the pathogenesis of several disease that affecting the central nervous system, such as neurodegenerative disease, epilepsy, multiple sclerosis, Alzheimer, and Parkinson diseases. In addition, oxidative damage has been observed in various in vivo and in vitro studies with inborn errors of metabolism, including X-ALD. In this context, this review is focused on oxidative stress in X-ALD, with emphasis on studies using biological samples from patients affected by this disease.
Asunto(s)
Adrenoleucodistrofia/patología , Estrés Oxidativo , Adrenoleucodistrofia/terapia , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Radicales Libres/metabolismo , Humanos , Modelos BiológicosRESUMEN
Cystathionine-ß-synthase (CBS) deficiency is the main cause of homocystinuria. Homocysteine (Hcy), methionine, and other metabolites of Hcy accumulate in the body of affected patients. Despite the fact that thromboembolism represents the major cause of morbidity in CBS-deficient patients, the mechanisms of cardiovascular alterations found in homocystinuria remain unclear. In this work, we evaluated the lipid and inflammatory profile, oxidative protein damage, and the activities of the enzymes paraoxonase (PON1) and butyrylcholinesterase (BuChE) in plasma of CBS-deficient patients at diagnosis and during the treatment (protein-restricted diet supplemented with pyridoxine, folic acid, betaine, and vitamin B12). We also investigated the effect of folic acid and vitamin B12 on these parameters. We found a significant decrease in HDL cholesterol and apolipoprotein A1 (ApoA-1) levels, as well as in PON1 activity in both untreated and treated CBS-deficient patients when compared to controls. BuChE activity and IL-6 levels were significantly increased in not treated patients. Furthermore, significant positive correlations between PON1 activity and sulphydryl groups and between IL-6 levels and carbonyl content were verified. Moreover, vitamin B12 was positively correlated with PON1 and ApoA-1 levels, while folic acid was inversely correlated with total Hcy concentration, demonstrating the importance of this treatment. Our results also demonstrated that CBS-deficient patients presented important alterations in biochemical parameters, possibly caused by the metabolites of Hcy, as well as by oxidative stress, and that the adequate adherence to the treatment is essential to revert or prevent these alterations.
Asunto(s)
Arildialquilfosfatasa/sangre , Butirilcolinesterasa/sangre , Homocistinuria/sangre , Lípidos/sangre , Oxidantes/sangre , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Preescolar , Cistationina betasintasa/deficiencia , Cistationina betasintasa/genética , Femenino , Ácido Fólico/sangre , Ácido Fólico/fisiología , Homocistinuria/genética , Humanos , Masculino , Estrés Oxidativo/fisiología , Vitamina B 12/sangre , Vitamina B 12/fisiología , Adulto JovenRESUMEN
Lipid-core polymeric nanocapsules are innovative devices that present distinguished characteristics due to the presence of sorbitan monostearate into the oily-core. This component acted as low-molecular-mass organic gelator for the oil (medium chain triglycerides). The organogel-structured core influenced the polymeric wall characteristics disfavoring the formation of more stable polymer crystallites. This probably occurred due to interpenetration of these pseudo-phases. Sorbitan monostearate dispersed in the oily-core was also able to interact by non-covalent bonding with the drugs increasing the drug loading capacity more than 40 times compared to conventional nanocapsules. We demonstrated that the drug-models quercetin and quercetin pentaacetate stabilized the organogel network probably due to interactions of the drug molecules with the sorbitan monostearate headgroups by hydrogen bonding.
Asunto(s)
Hexosas/química , Lípidos/química , Nanocápsulas/química , Tamaño de la Partícula , Quercetina/química , Dispersión del Ángulo Pequeño , Difracción de Rayos XRESUMEN
Maple Syrup Urine Disease (MSUD) is a metabolic disorder caused by a severe deficiency of the branched-chain α-keto acid dehydrogenase complex activity which leads to the accumulation of branched-chain amino acids (BCAA) leucine (Leu), isoleucine and valine and their respective α-keto-acids in body fluids. The main symptomatology presented by MSUD patients includes ketoacidosis, failure to thrive, poor feeding, apnea, ataxia, seizures, coma, psychomotor delay and mental retardation, but, the neurological pathophysiologic mechanisms are poorly understood. The treatment consists of a low protein diet and a semi-synthetic formula restricted in BCAA and supplemented with essential amino acids. It was verified that MSUD patients present L-carnitine (L-car) deficiency and this compound has demonstrated an antioxidant and anti-inflammatory role in metabolic diseases. Since there are no studies in the literature reporting the inflammatory profile of MSUD patients and the L-car role on the inflammatory response in this disorder, the present study evaluates the effect of L-car supplementation on plasma inflammatory cytokines interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interferon-gamma (INF-É£), and a correlation with malondialdehyde (MDA), as a marker of oxidative damage, and with free L-car plasma levels in treated MSUD patients. Significant increases of IL-1ß, IL-6, and INF-É£ were observed before the treatment with L-car. Moreover, there is a negative correlation between all cytokines tested and L-car concentrations and a positive correlation among the MDA content and IL-1ß and IL-6 values. Our data show that L-car supplementation can improve cellular defense against inflammation and oxidative stress in MSUD patients and may represent an additional therapeutic approach to the patients affected by this disease.
Asunto(s)
Carnitina/uso terapéutico , Suplementos Dietéticos , Mediadores de Inflamación/sangre , Enfermedad de la Orina de Jarabe de Arce/sangre , Enfermedad de la Orina de Jarabe de Arce/tratamiento farmacológico , Niño , Preescolar , Femenino , Humanos , Inflamación/sangre , Inflamación/tratamiento farmacológico , MasculinoRESUMEN
Niemann-Pick type C1 (NP-C1) is a lysosomal storage disease (LSD) caused by mutations in NPC1 gene that lead to defective synthesis of the respective lysosomal transporter protein and cholesterol accumulation in late endosomes/lysosomes (LE/L) compartments, as well as glycosphingolipids GM2 and GM3 in the central nervous system (CNS). Clinical presentation varies according to the age of onset and includes visceral and neurological symptoms, such as hepatosplenomegaly and psychiatric disorders. Studies have been associating the pathophysiology of NP-C1 with oxidative damage to lipids and proteins, as well as evaluating the benefits of adjuvant therapy with antioxidants for this disease. In this work, we evaluated the DNA damage in fibroblasts culture from patients with NP-C1 treated with miglustat, as well as the in vitro effect of the antioxidant compounds N-acetylcysteine (NAC) and Coenzyme Q10 (CoQ10), using the alkaline comet assay. Our preliminary results demonstrate that NP-C1 patients have increased DNA damage compared to healthy individuals and that the treatments with antioxidants can mitigate it. DNA damage may be due to an increase in reactive species since it has been described that NP-C1 patients have increased peripheral markers of damage to other biomolecules. Our study suggests that NP-C1 patients could benefit from the use of adjuvant therapy with NAC and CoQ10, which should be better evaluated in a future clinical trial.
Asunto(s)
Enfermedad de Niemann-Pick Tipo C , Humanos , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/metabolismo , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Daño del ADNRESUMEN
The integration and exchange of information among health organizations and system providers are currently regarded as a challenge. Each organization usually has an internal ecosystem and a proprietary way to store electronic health records of the patient's history. Recent research explores the advantages of an integrated ecosystem by exchanging information between the different inpatient care actors. Many efforts seek quality in health care, economy, and sustainability in process management. Some examples are reducing medical errors, disease control and monitoring, individualized patient care, and avoiding duplicate and fragmented entries in the electronic medical record. Likewise, some studies showed technologies to achieve this goal effectively and efficiently, with the ability to interoperate data, allowing the interpretation and use of health information. To that end, semantic interoperability aims to share data among all the sectors in the organization, clinicians, nurses, lab, the entire hospital. Therefore, avoiding data silos and keep data regardless of vendors, to exchange the information across organizational boundaries. This study presents a comprehensive systematic literature review of semantic interoperability in electronic health records. We searched seven databases of articles published between 2010 to September 2020. We showed the most chosen scenarios, technologies, and tools employed to solve interoperability problems, and we propose a taxonomy around semantic interoperability in health records. Also, we presented the main approaches to solve the exchange problem of legacy and heterogeneous data across healthcare organizations.
RESUMEN
The COVID-19 pandemic has rapidly spread around the world. The rapid transmission of the virus is a threat that hinders the ability to contain the disease propagation. The pandemic forced widespread conversion of in-person to virtual care delivery through telemedicine. Given this gap, this article aims at providing a literature review of machine learning-based telemedicine applications to mitigate COVID-19. A rapid review of the literature was conducted in six electronic databases published from 2015 through 2020. The process of data extraction was documented using a PRISMA flowchart for inclusion and exclusion of studies. As a result, the literature search identified 1.733 articles, from which 16 articles were included in the review. We developed an updated taxonomy and identified challenges, open questions, and current data types. Our taxonomy and discussion contribute with a significant degree of coverage from subjects related to the use of machine learning to improve telemedicine in response to the COVID-19 pandemic. The evidence identified by this rapid review suggests that machine learning, in combination with telemedicine, can provide a strategy to control outbreaks by providing smart triage of patients and remote monitoring. Also, the use of telemedicine during future outbreaks could be further explored and refined.
Asunto(s)
COVID-19 , Telemedicina , COVID-19/epidemiología , Humanos , Aprendizaje Automático , Pandemias/prevención & control , TriajeRESUMEN
BACKGROUND: Background The second wave of the COVID-19 pandemic was more aggressive in Brazil compared to other countries around the globe. Considering the Brazilian peculiarities, we analyze the in-hospital mortality concerning socio-epidemiological characteristics of patients and the health system of all states during the first and second waves of COVID-19. METHODS: We performed a cross-sectional study of hospitalized patients with positive RT-PCR for SARS-CoV-2 in Brazil. Data was obtained from the Influenza Epidemiological Surveillance Information System (SIVEP-Gripe) and comprised the period from February 25, 2020, to April 30, 2021, separated in two waves on November 5, 2020. We performed a descriptive study of patients analyzing socio-demographic characteristics, symptoms, comorbidities, and risk factors stratified by age. In addition, we analyzed in-hospital and intensive care unit (ICU) mortality in both waves and how it varies in each Brazilian state. FINDINGS: Between February 25, 2020 and April 30, 2021, 678 235 patients were admitted with a positive RT-PCR for SARS-CoV-2, with 325 903 and 352 332 patients for the first and second wave, respectively. The mean age of patients was 59 · 65 (IQR 48 · 0 - 72 · 0). In total, 379 817 (56 · 00%) patients had a risk factor or comorbidity. In-hospital mortality increased from 34 · 81% in the first to 39 · 30% in the second wave. In the second wave, there were more ICU admissions, use of non-invasive and invasive ventilation, and increased mortality for younger age groups. The southern and southeastern regions of Brazil had the highest hospitalization rates per 100 000 inhabitants. However, the in-hospital mortality rate was higher in the northern and northeastern states of the country. Racial differences were observed in clinical outcomes, with White being the most prevalent hospitalized population, but with Blacks/Browns (Pardos) having higher mortality rates. Younger age groups had more considerable differences in mortality as compared to groups with and without comorbidities in both waves. INTERPRETATION: We observed a more considerable burden on the Brazilian hospital system throughout the second wave. Furthermore, the north and northeast of Brazil, which present lower Human Development Indexes, concentrated the worst in-hospital mortality rates. The highest mortality rates are also shown among vulnerable social groups. Finally, we believe that the results can help to understand the behavior of the COVID-19 pandemic in Brazil, helping to define public policies, allocate resources, and improve strategies for vaccination of priority groups. FUNDING: Coordinating Agency for Advanced Training of Graduate Personnel (CAPES) (C.F. 001), and National Council for Scientific and Technological Development (CNPq) (No. 309537/2020-7).
RESUMEN
INTRODUCTION: With the COVID-19 pandemic, hospitals in low-income countries were faced with a triple challenge. First, a large number of patients required hospitalisation because of the infection's more severe symptoms. Second, there was a lack of systematic and broad testing policies for early identification of cases. Third, there were weaknesses in the integration of information systems, which led to the need to search for available information from the hospital information systems. Accordingly, it is also important to state that relevant aspects of COVID-19's natural history had not yet been fully clarified. The aim of this research protocol is to present the strategies of a Brazilian network of hospitals to perform systematised data collection on COVID-19 through the WHO platform. METHODS AND ANALYSIS: This is a multicentre project among Brazilian hospitals to provide data on COVID-19 through the WHO global platform, which integrates patient care information from different countries. From October 2020 to March 2021, a committee worked on defining a flowchart for this platform, specifying the variables of interest, data extraction standardisation and analysis. ETHICS AND DISSEMINATION: This protocol was approved by the Research Ethics Committee (CEP) of the Research Coordinating Center of Brazil (CEP of the Hospital Nossa Senhora da Conceicao), on 29 January 2021, under approval No. 4.515.519 and by the National Research Ethics Commission (CONEP), on 5 February 2021, under approval No. 4.526.456. The project results will be explained in WHO reports and published in international peer-reviewed journals, and summaries will be provided to the funders of the study.
Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Pandemias , Brasil/epidemiología , SARS-CoV-2 , Estudios de Cohortes , Organización Mundial de la SaludRESUMEN
The COVID-19 outbreak exposed several problems faced by health systems worldwide, especially concerning the safe and rapid generation and sharing of health data. However, this pandemic scenario has also facilitated the rapid implementation and monitoring of technologies in the health field. In view of the occurrence of the public emergency caused by SARS-CoV-2 in Brazil, the Department of Informatics of the Brazilian Unified Health System created a contingency plan. In this paper, we aim to report the digital health strategies applied in Brazil and the first results obtained during the fight against COVID-19. Conecte SUS, a platform created to store all the health data of an individual throughout their life, is the center point of the Brazilian digital strategy. Access to the platform can be obtained through an app by the patient and the health professionals involved in the case. Health data sharing became possible due to the creation of the National Health Data Network (Rede Nacional de Dados em Saúde, RNDS). A mobile app was developed to guide citizens regarding the need to go to a health facility and to assist in disseminating official news about the virus. The mobile app can also alert the user if they have had contact with an infected person. The official numbers of cases and available hospital beds are updated and published daily on a website containing interactive graphs. These data are obtained due to creating a web-based notification system that uses the RNDS to share information about the cases. Preclinical care through telemedicine has become essential to prevent overload in health facilities. The exchange of experiences between medical teams from large centers and small hospitals was made possible using telehealth. Brazil took a giant step toward digital health adoption, creating and implementing important initiatives; however, these initiatives do not yet cover the entire health system. It is expected that the sharing of health data that are maintained and authorized by the patient will become a reality in the near future. The intention is to obtain better clinical outcomes, cost reduction, and faster and better services in the public health network.
Asunto(s)
Tecnología Biomédica/métodos , Tecnología Biomédica/organización & administración , COVID-19/prevención & control , Tecnología Digital/métodos , Tecnología Digital/organización & administración , Pandemias/prevención & control , Brasil/epidemiología , COVID-19/epidemiología , Humanos , Aplicaciones Móviles , TelemedicinaRESUMEN
We hypothesized that the control of the poly(epsilon-caprolactone) (PCL) nanosphere sizes could be achieved by controlling the size of the primary emulsion droplets considering a combined effect of the ethanol volume fraction in the organic phase and the stirring rate of the primary emulsion. In this way, we prepared poly(epsilon-caprolactone) (PCL) nanospheres in order to evaluate the effect of those variables on the hydrodynamic diameters of the nanoparticles by a 32 factorial design. The size distribution curves considering intensity, volume and number of particles showed monomodal distributions for all formulations. The nanoparticle diameters (z-average) decreased from 423 to 249 nm with the increase in both the ethanol volume fraction from 0.0 to 0.4 and the stirring rate from 9500 to 17500 rpm. The polydispersity indexes ranged from 0.076 to 0.176. A statistical model based on the regression coefficients calculated by the factorial design analysis was proposed in order to predict the nanoparticle diameters. Using the predictive model, the results showed high similarity between the experimental and the predicted nanosphere diameters, validating the model for loaded PCL nanospheres. The backscattering profiles of the primary emulsions prepared using different proportions of ethyl acetate and ethanol showed a reduction in the size of the droplets from 1.659 microm to 0.706 microm with the increase in the ethanol volume fraction and the stirring rate. Ethanol decreased the restoring stress of the droplets as a consequence of the reduction in the interface tension. The decrease in the nanoparticle mean size was a consequence of the droplet size reduction in the primary emulsion.
RESUMEN
Inorganic nanoparticles that mimic the activity of enzymes are promising systems for biomedical applications. However, they cannot distinguish between healthy and damaged tissues, which could cause undesired effects. Natural enzymes avoid this drawback via activation triggered by specific biochemical events in the body. Inspired by this strategy, we proposed an artificial cerium-based proenzyme system that could be activated to a superoxide dismutase-like form using H2O2 as the trigger. To achieve this goal, an innovative and easy strategy to synthesize Ce(OH)3 nanoparticles as artificial proenzymes was developed using a lyotropic liquid crystal composed of phytantriol, which was essential to maintain their stability at physiological pH. The transmission electron microscopy measurements showed that the Ce(OH)3 nanoparticles were as small as 2 nm. The nanoparticles were fitted into the tiny aqueous channels of the liquid crystal matrix, which presented a Pn3m space group. X-ray absorption near edge structure measurements were used to determine the Ce(iii) fraction of the proenzyme-like nanoparticles, which was around 85%. The Ce(iii) fraction dramatically dropped to around 5% after contact with H2O2 because of the conversion of Ce(OH)3 to CeO(2-x) nanoparticles. The CeO(2-x) nanoparticles showed superoxide dismutase-like activity in contrast to the inactive Ce(OH)3 form. The proof of concept presented in this work opens up new possibilities for using nanoparticles as artificial proenzymes that are activated by a biochemical trigger in vivo.
RESUMEN
Lysosomal Storage Disorders (LSDs) are characterized by an abnormal accumulation of substrates within the lysosome and comprise more than 50 genetic disorders with a frequency of 1:5000 live births. Nanotechnology may be a promising way to circumvent the drawbacks of the current therapies for lysosomal diseases. The blood circulation time and bioavailability of the enzymes or drugs could be improved by inserting them in nanocarriers, which could decrease and/or avoid the need of frequent intravenous infusions along with the minimization or elimination of associated immunogenic responses. Considering the exposed, we aimed to build monoolein-based nanoparticles stabilized by polysorbate 80 as a smart platform able to reach the central nervous system (CNS) to deliver drugs or enzymes inside lysosomes. We developed and characterized the nanoparticles by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (Cryo-TEM). The nanoparticles showed a diameter of 115â¯nm, which is compatible with in vivo application. The SAXS patterns of the formulations displayed a single broad correlation peak that was fitted to the Teubner-Strey model confirming that disordered bicontinuous structures were obtained. Cryo-TEM images corroborated this finding and showed nanoparticles with size values that are similar to those determined by DLS. Furthermore, the nanoparticles did not present cytotoxicity when they were incubated with human fibroblasts, and demonstrated hemolytic activity proportional to the negative control, proving to be safe for parenteral administration. Through the use of a fluorescent dye to track the nanoparticles inside the cell, we demonstrated that they reached lysosomes after 1â¯h of treatment. More interestingly, the fluorescent dye was detected in the CNS of mice just after 3â¯h of treatment. The nanoparticles show great potential to improve the treatment of LSDs with brain impairment, acting as a smart platform to targeted delivery of drugs or enzymes.